
April 1987 Report No. STAN-CS-88-1204 e r•Thesis

0

,.00°- F/& o.

I Exploiting Constraints in Design Synthesis

by
* •

Joseph Jeffrey Finger

Department of Computer Science

Stanford University 0

Stanford, California 94305

DTIC
S E LECTE 0

AUG 0 4 IWDB

1) LIBUTON STATEMENT A
Approved for public releauel

Distrbution Unlaimited .. ,

&A* *
... ' ,-, _."§

-~ ' ASS.'-CA.-ON 01: r' S PAGE

jo REPORT SECURITY CLASSIFICATION III. RES RICTIVE MARKINGS. 00 Jr 0.18

unclassified

za SECIjAiTY CLASSIFICATION AUTHORITY 3. DISTROILUTiONIAVASIT Of REPORT
______________________________________Approved for public release:

D ECLASSIFiCAtIO/DIOO*NGRAOING SCHEDULE Dsrbto niie

41 PERFORMING ORGANIZATiON REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(%)

STAN-CS-88- 1204

64 %AMC OF PERFORMING ORGANIZATION 160 OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION
Computer Science Department (f oiau)

6C. ADDRESS (CitY. Staff. And ZIP Code 7b. ADRESSCity. Stat and IP Code

So NAME Of FUINDING SPONSORING Sb, OFFICE SYMBOL 9. PROCUREMEN4T INSTRUMENT IDENTIFICATION NUMBER

SC. ADDRESS (City. StAre. &Ad ZIP Code 10. SOURCE OF FUNDING NUMBERS
PROGRAM -_ PROWC TSK WORE UNIT

1400 Wilson Blvd. ELEMENT NO. NO. No ACCESSION NO.
Arlington, VA 22i09

11 TITLE (InClude SeCuffty C1411saficationi

Exploiting Constraints in Design Synthesis

12 PERSONAL AUTHOR(S)
Joseph Jeffrey Finger ____________________ __________

i3a TYPE OF REPORT 13b TIME COVERED 14. DATE OF R f~4@.M.3S S PAEuT

IFROM _____TO
Aprilfro

'6 SUPPLEMENTARY NOTATION

GROUPr CODES 18 ISSUSECT TERMS (Continlue an roe it noeteiw ard Widfy by block number)

9 ASSTRACT (Continue on revorSe of nOCOeualy and .dentif by blOCk 11110011060

A The class of design synthesis problems encompasses a wide spectrum of common encountered
problew.s, including robot planning problems, synthesis of electronic circuits, chemical
synthesis, '?enetlcs ex7Prirlet dsil'%, P- co-p~uter pro7ral' synthesis. This thesis is in
two main parts, both dealing with design synthesis. The first part is the RESIDUE METHOD,
an abductive approach to design synthesis, and the second is SUPERSUMPTION, a generalization
of consistency checking of partially completed designs.

~The RESIDUE METHOD synthesizes designs by reduction of the design goal to another, primitive
* achievable goal. The reduced goal must be consistent with known facts about the world, must

be sufficient to achieve the original goal, and must be a conjunction of formulas from a
language of primitively achievable formulas. The RESIDUE METHOD expresses the design goal,
the final design, and all intermediate designs as formulas of first-order logic. Soundness
and completeness results are given for two resolution-based -residue procedures.

2o DisTRiSurtoNfAVAILAILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
o UINCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0OTIC USERS
2.NAME OF RESPONSIBLE INDIVIDUAL 22b, TELEPHONE (Include Arta Code) I 2c OFFICE SYMBOL

DO FORM 1473. Sa MAR 63 APR editon May be Wied unttl 9shaws1e SECURITY CLASSIFICATION OF TI4IS PAGE
All Othler eldstion at* 01011WS.

Ig P-.

EXPLOITING CONSTRAINTS IN DESIGN SYNTHESIS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Accesicq For

DTI SIS

NS ECTED~~E Li

....~ ~ ~... L ""-._........

B y (. . (e "

Joseph Jeffrey Finger

M-larch 1987

©Copyright 1987

by

Joseph Jeffrey Finger

Om 0

I certify that I have read this thesis and that in my opinion it is fully

adequate. in scope andl in quality, as a dissertation for the degree of

Doctor of Philosophy.

Mich~ael R.. Genesereth
(Principal Adviser)

1 certify that I have read thlis I hesis and that in my opinion it is fully

adequate, in scope and in qulity. as a dissertation for the degree of

Doctor of Philosophy.

Bruce G. Buchanan

I certify tha~t I have read this C. -,is anid that in iny opinion it is fully

adlequate. in scope and~ ini (IiitY. as a dissertationi for the degree of

Doctor o Philosophy.
&

dJRicharVd ai iger
(',I International)

Approved for the Uni~versityv Commuittee on Graduiate Studies:

Dean of Graduate Studies &Research

ii7

Abstract

The class of design synthesis problems encompasses a wide spectrum of common encountered prob-

lems, including robot planning problems, synthesis of electronic circuits, chemical synthesis, genetics

experiment design, and computer program synthesis. This thesis is in two main parts, both dealing
with design synthesis. The first part is the Residue Method, an abductive approach to design synthe-

sis, and the second is supersumption, a generalization of consistency checking of partially completed

designs.

The Residue Method synthesizes designs by reduction of the design goal to another, primitively

achievable goal. The reduced goal must be consistent with known facts about the world, must be

sufficient to achieve the original goal, and must be a conjunction of formulas from a language of

primitively achievable formulas. The Residue Method expresses the design goal, the final design, and

all intermediate designs as formulas of first-order logic. The usual approach in deductive synthesis

has been to express designs as a single term of composed state transformation functions. Expression

of designs as a formula rather than a term simplifies synthesis of non-linear plans, allows postponing

imposition of ordering constraints, and allows one to reason directly about the proposed design.

Soundness and completeness results are given for two resolution-based residue procedures.

Supersumption is an attempt to exploit the consistency requirement in order to accelerate syn-

thesize of designs. Not only is consistency of a partially completed design checked, but additional

"ramifications" may be derived that must be true for the partial design to remain consistent. By

making sure that the ramifications are not violated, one avoids searching parts of the search space

that do not contain legal designs. In addition, knowing ramifications may make additional search

control heuristics directly applicable. The process of imposing additional constraints on a subgoal is

called "supersumption." Two phenomena are described by which supersumption can speed up the

search - use of ramifications as better generators of candidates than the unadorned goal, and use

of ramifications as filters to quickly eliminate inconsistent designs. Two resolution-based methods

for deriving ramifications are given, along with soundness and completeness results.

iv

Acknowledgements

First and foremost, I would like to express my gratiti'de and indebtf-dness to my thesis
advisor Michael Genesereth. Besides being my teacher, Mike has been a source of optimism,

of new ideas and of sharp criticisms. He has encouraged me at every step of the way and

stuck it out with me to the end.

Bruce Buchanan and Richard Waldinger, my other Reading Committee members. both

went to great lengths to help me, and they bent over backwards to get my thesis read in

time. I am very grateful to both, and wish I would have made more and better use of all of

their talents and able suggestions.

Many thanks to Gio Wiederhold for serving on my Orals Committee.

Zohar Manna provided me with more than a little sound and very necessary advice,

and was probably more effective than anyone at giving me a gentle (or not so gentle) shove

when it was needed.

The rest of the Logic Group has provided a, receptive and patient sounding board over the

years. Thanks in particular to Tom Dietterich, Matt Ginsberg, Russ Greiner, Jock Mackin-
lay, Jeff Rosenschein, Narinder Singh, Dave Smith, Devika Subramaian, and Richard Tre-

itel.

The long, hard process of completing a disseration would have been ('onpletely inipos-

sible without the support of many friends over the years. I would like to especially mention
each of the following: Avron Barr, Jim Bennett, Ora Biran, Stephanie Buchholz, Batia Es-
hel, Donna Goldberg, Jacques Goldberg, Suzanne Jacobs, Don Katcoff, ra. .lachefskv, Pane
Machefsky, Alissa Nordlicht. Dan Perkins, Anat Rafaeli, Sheizaf Rafaeli, Beth lRosenschein,

Jeff Rosenschein, Shimuel Shaffer, Nahum Silverman, Dick Sites., l)ebbie Wenoctir, Miclhael

Wenocur, and Eli Yaa.cobi.

My years at Stanford would Ihave been very diff'elit andI much poorer weto, it not for

my office mates -- fellow occupants of the Bozo ilmis - in Cedar liall and later in Margaret
•Jacks Hall: Paul Cohen, .John Kuinz, Jock Ma.ckinlay, Jeff loswtiscliiii , and])avid Smith.

Finally, I want to thank my fanmily for all their support during these years. Thanks

~ ~'' -

go to my parents Julia and Joseph Finger, my sister and brother-in-law Tassie and Steve

Bielsky, my aunt and uncle Rosalie and Alfons Salinger, and to my grandmother Gertrude
Levy Finger, who had hoped very much to see me complete this project.

ViI

'Vv M

61511=10

Contents

Abstract iv

Acknowledgements V

1 Introduction 1

1.1 Overview..1

1.1.1 Residue - Representation of Designs as Formulas. 2

1.1.2 Supersumption - Faster Solution via Added Constraints 5

1.1.3 Ramifications - Generalizing Constraint Propagation.
1.2 Approach and Scope of the Thesis 8

1.2.1 Deductive Synthesis. 8
1.2.2 Number of Solutions to a Problem 10

1.2.3 The Qualification and Ramification Problems 12

1.2.4 Best Fit Designs. 13

1.3 Reader's Guide. 13

2 Residue 14

2.1 Design Synthesis 14

2.2 Design, by Finding Residues 15

2.2.1 The Goal G. 16
2.2.2 The World Model W 17
2.2.3 Assumnables. 18

2.2.4 Definition of Design. 19
2.2.5 Consistency of the Design 20

2.3 Residue Procedures for Design Synthesis. 23
2.4 Ordered Residue 26

2.4.1 Ordered Resolution. 26

Vii

2.4.2 Ordered Residue Procedure. 28
2.4.3 Completeness of Ordered Residue. 30

2.4.4 Relation to Prolog 33
2.5 Resolution Residue. 34

2.5.1 Definitions.

2.5.2 The Resolution Residue Procedure 37

2.5.3 Completeness of Resolution Residue. 37
2.6 Residue with Answer Extraction. 39

2.7 Discussion. 41

2.7.1 The Single-Term Approach. 41

2.7.2 Problems of Expression 42

2.7.3 Reasoning about Partial Designs. 45

2.7.4 Minimal Answers. 46

2.7.5 Mimicking the Single-Term Approach with Residues. 46

2.7.6 Consistency Checking. 47

2.8 Related Work. 48

2.8.1 Reiter's Default Logic. 48

2.8.2 Truth Maintenance. 50

2.8.3 Douglas Smith. 52

2.8.4 PROLOG/EX 52

2.8.5 Theorist. 52

2.9 Conclusion. 53

3 Supersumption 54

3.1 Ramifications of a Goal. 54

3.2 Using Ramifications of a. Goal. 55

3.3 Subgoals, Design Decisions and Ramifications. 56

3.4 Formal Definition of Ramifications. 57

3.5 Supersumption. 60

3.6 Speedup Via Supersumption 61

3.6.1 Generators and Filters. 63

3.6.2 Ramifications as Generators 64

3.6.3 Additional Restrictions on Arguments. 67

3.6.4 Ramifications as Filters. 689

3.7 Summary 71

viii

q jXy~-

4 Finding Ramnifications 73

4.1 Introduction.. 73

4.2 Lexical Generation of Formulas (PLex,). 74

4.3 Natural Deduction on Subgoals (PNa t). 75

4.4 Definitions for Resolution- Based Forward Reasoning 77

4.5 Resolution on Subgoal Clauses ('PROC)............................. 78

4.5.1 Soundness Of lPRGC......................................80

4.5.2 Completeness Of PRGC. 81

4.5.3 Caching the Results of P>RGC. 82

4.6 Resolution with Partial Subsumption (PRps). 84

4.6.1 The PRps Procedure. 85

4.6.2 Soundness of PRps 86

4.6.3 Completeness of PRps. 87

4.7 Inheritance of Ramifications 90

4.7.1 Inheritance under WG-Resolution Steps. 91

4.7.2 Inheritance under G Factoring Steps 92

4.7.3 Inheritance under GG Resolution Steps 93

4.8 Related Work 95

4.8.1 McSkimin and Minker. 95

4.8.2 Stailman and Sussman 95

4.8.3 MYCIN. 96

4.8.4 Stefik's MOLGEN. 96

4.8.5 King's QUIST 97

4.8.6 Kohi and Minker 97

4.8.7 Chakravarathy, et al 98

4.8.8 Lee, et al. 9

4.9 Summary.

Conclusion10
5.1Smayo otiuin 100

5.1. ummaryeorbutornDsig. 101

5.1.1 APraewre for Design.nh 101

5.1.2 SPreurefo in Synthi.s.. 101

5.1.3 Prcuerptindi aiion........ 102

5.12 Procdur foLimitugRmiiations o h pri... 102

5.2.1 Assumable Formulas inust be Atoic 102

5.2.2 Design and Subdesigns Have No Name 103
5.2.3 Rederivation of Cached Deductions. 103

5.3 Further Work 104

5.3.1 Control Heuristics for Residue 104

5.3.2 Cost of Solving a Problem. 104

5.3.3 Control Heuristics for Finding Ramifications 104

5.3.4 Probable Constraints. 104

References 106

01

xI

List of Figures

I Design S ynthesis: A Mapping from One Set of Specifications to Another . 16
2 Valid, Satisfiable, and Unsatisfiable Formulas of First-Order Logic 22
3 Simplified View of a Residue Procedure. 24
-1 Goal Reduction Steps. 25
5 The Ordered Residue Procedure. 29
61 ihe liesolution Residue Procedure. 35

7 Rleformulation of Conjunctive Goals via Supersumption. 62
8 Speedup Obtained Using Additional Constraint as Generator. 64
9 Using a iainification as a Filter. 71
10 Non-Inheritance of Ramifications 93

xiS

i

Chapter 1

Introduction

Everyone designs who devises courses of action aimed at changing existing

situations into preferred ones. The intellectual activity that produces material

artifacts is no different fundamentally from the one that prescribes remedies Jor

a sick patient or the one that devises a new sales plan for a company or a social

welfare policy for a state.

Herbert Simon, The Science of Design

1.1 Overview

Robot planning, genetic synthesis, chemical synthesis, circuit design, and program synthesis

are but a few examples of synthesis or design problems. In each of these domains the design

process is that of finding a composition of known types of components to form a whole

raeting given specifications. Almost from the beginning of the study of \ rt ificial Intelligence

in the 1950's, researchers have sought to automate the process of design synthesis. \ great

many systems have been developed, some general and others special-purpose, some formal

in approach and others less formal.

This dissertation attempts to find a formal framework that captures the notion of the

design process as ma king and using a possibly conflicting series of design decisions to rI.riwt

the set of candidate designs. Three main facets of the design process are explored:

1. Residue, a deductive franiework for sy'nthesis in which designs are re[)re ite(! as

sets of formulas.
'From Thb .5ciencc of the Artificnia, Sec'ond Edition, 'F'he MIT Press, (Cambridg' Massachuse-,q.

1969,1981, page 129.

LL

2 CHAPTER 1. INTRODUCTION

2. Supersumption, a technique for reformulation of design goals via added constraints.

3. Finding Ramifications, procedures for generating additional constraints that must
be satisfied in order for a design to be found. These constraints are found as part of

checking the consistency of a partially completed design.

1.1.1 Residue - Representation of Designs as Formulas

To solve a design synthesis problem is to map one specification into another. One starts
with a specification G (the goa) of what needs to be true of the object designed. A new

specification D (the design) is sought, such that D not only guarantees that G will be met,
but such that it is possible to implement D, and where D is specified at such a level that

the intended implementor needs no further instruction.

Chapter 2 presents such a formulation of design synthesis expressed in first-order predi-
cate calculus. It is assumed that there is a consistent set W of axioms describing the world

and that the goal G is expressed as a single formula. Furthermore it is assumed that there
is a language A of "assumable" formulas, that is, all formulas that specify an instruction

simple enough for the implementor to carry out without further instruction. It is assumed
that there is an algorithm that decides in negligible time whether an arbitrary formula is
in A or not. For convenience, let us also assume that a conjunction of assumable formulas
is assumable, that is, if A1,..., An E A then A1 A ... A An E A.

To be a legal design specification a set of formulas D = {D1 , D .. }D must be such that

1. W, D = G (The design achieves the goal),

2. W U D is satisfiable (The design is consistent with the world model), and

3. For all Di E D, Di E A. (The design is expressed in terms of the design primitives).

Any set D with the above properties is called a residve.2 Sometimes it will be convenient
to view D as a single formula D = D1 A ... A Dn. Each fact Di can be seen as a commitment

or constraint upon the design, that is, a design decision on the part of the designer. 3

2One might call this approach to design an abductive approach, though not without some confusion. The
term abduction or apogage dates back to Aristotle. An abduction is "a syllogism whose major premise is
known to be true but whose minor premise is merely probable." (The Encyclopedia of Philosophy, Macmillan
Publishing Co., Inc. &z The Free Press, New York, 1967, page 5-57). See also Hempel [42]. Charniak and "
McDermott [16] use the term in a similar way in describing generation of explanations. In addition, Charles
Sanders Peirce (1839-1914) [36] used "abduction" to mean the "creative formulation of statistical hypotheses"
(Encyclopedia of Philosophy, page 4-176).

3The idea of a design being built up as a sequence of decisions or constraints is not a new one, in
fact, virtually any search process can be viewed as a sequence of implicit or explicit, decisions. Heuristic
Dendral [8], REF-ARF [24] and Stefik's MOLGEN planner [93,92] are important examples of synthesis
procedures in which the decisions are explicit.

J1~~ 111

1.1. OVERVIEW 3

Representation of a design as a set of assumable facts is called the Residue Approach in this
work.

In logic, a term denotes an individual of the domain (or universe of discourse, as it
is sometimes called); a formula denotes a proposition about the world. In the residue
approach, the domain consists of possible design components and parameter values. Terms
denote such components or values, and formulas express propositions about those terms.
For example, to design a combinational circuit, the domain might be the possible NAND-
gates, wires, inputs of NAND-gates, and outputs of NAND-gates. Synthesis of RC-circuits
via the residue approach might entail a domain of wires, resistors, capacitors, resistors,
capacitances, and resistances. Decisions about the design would be expressed as formulas
denoting propositions about the wires, resistors, resistances, etc.

Example 1.1 Consider a planning problem in which the designer has decided
that (1) a puton(A,B) action will be executed and (2) a puton(B,C) will be 0
executed. These two decisions can be represented via the two formulas:

Execution(puton(A, B), T1)

Execution (puton (B, C), T2).

Puton is a function mapping two blocks into an action. Execution is a relation
on an action a and a time t and denotes the proposition that action a will be
executed at time t. Note that the above two facts in no way determine whether
time T1 is before or after time T2.

The Single-Term Approach Deductive synthesis research (See, for example, Green [321,
Waldinger and Lee [99], Luckham and Nilsson [541, Manna and Waldinger [5S,59], and Wos,
et al [106].) has traditionally represented designs as a single term, that is, both completed
designs and incomplete designs are represented as a composition of functions. For example,
a robot plan to put block B on block C and then put block A on block B might be

represented as
puton(A, B, puton(B, C, So)), (1)

where So is the initial state of the system, and puton is a function mapping two blocks and
a state to a state. The above approach of representing the design via a single term will be

called the single-term approach.
The single-term approach requires that all designs, both completed and incomplete, be

a part of the domain. It is not difficult to imagine finding a set of functions with which to

4 CHAPTER 1. INTRODUCTION

build terms expressing completed designs, but a set of functions for expressing all desired

incomplete designs is more problematic.

Example 1.2 Consider the example from (1) of the robot plan expressed as

puton(A, B, puton(B, C, So)). If, during the design process, it is determined that

the plan should contain a puton(A, B) action and also a puton(B, C) action with-

out specifying their order, it is not clear how to express the incomplete plan as a

single term. Instead, one must choose either the term puton(A, B, puton(B, C, So))

or the term puton(B, C, puton(A, B, So)).

The difficulty in the above example is that the set of completed designs is easily rep-

resented as a single term, but the set of desired partial designs is much bigger and not as

ammenable to representation as a single term. Note that in order to express the desired

information, the partial design had to be constrained more than necessary.

Advantages of the Residue Approach The thesis claims that it is beneficial to rep-

resent designs, especially incomplete designs, as sets of formulas rather than single terms.

The following reasons will be elaborated in Chapter 2:

1. As illustrated in Examples 1.1 and 1.2, the residue approach is more expressive than
the single-term approach; many design decisions can be expressed easily in the residue

approach, but can only be expressed via a stronger constraint in the single-term

approach. In such a case, the lack of expressiveness of the single-term approach can

result in unnecessary backtracking. 4 Attempts to avoid such difficulties in the single-

term approach are frought with difficulties.

It should be noted that syn:tactically, any set of formulas can be encoded as a compo-

sition of functions - one need only define a new (n + 1)-ary function for each n-ary

relation and connective in the language. Thus, to say that single terms are inherently

less expressive than sets of formulas is in some sense incorrect. On the other hand,

such an encoding of a set of formulas begs the question. Instead of denoting a set of

state transformations constituting a prescription for a design, such a composition of

functions would denote any design for which all the encoded propositions hold - a

perverse way of taking the residue approach.

4Similar ideas were expressed in Stallman and Sussman's EL [90] and in t he least commitmet cycle of
Stefik's planning engine [93,921.

11110 1

1.1. OVERVIEW 5

2. Just as incomplete designs are better represented as sets of facts than as single terms,

one might desire a greater expressness for complete designs as well. In Example 1.2,

for example, it might not matter which action comes first, or even whether they are

executed in parallel. As such, it is usually desirable not to commit to one ordering or

the other (as demanded by the single-term approach).

3. For reasoning about control strategies, performing consistency checking or finding su-

persumptions (presented in Chapters 3 and 4), it is important to be able to reason

about the design. An inference engine can reason directly from a set of facts using

well-understood mechanisms of logic. In contrast, reasoning about a single term is an

ad hoc process.

4. There are problems for which the full expressiveness is not needed, that is, the ex-

pressiveness of single-term approach is perfectly adequate. For such cases, the residue

approach can be used on these problems as efficiently as the single-term approach.

The above formulation of design problems is not operational - there must be a proce-

dure for finding residues. Chapter 2 presents two such procedures for generating residues,

Resolution Residue and Ordered Residue. In addition, it proves appropriate completeness

results for the two procedures.

1.1.2 Supersumption - Faster Solution via Added Constraints

In solving design problems via various residue procedures, it was noticed that the systems

were not able to take advantage of information gained during consistency checking. Rather

than just knowing that a design is consistent, it was desired to know what conditions will

have to hold if the design is to remain consistent. Such a condition can then be incorporated

into the goal to avoid needless search.

Supersumption is a such technique for incorporating these conditions, reformulating

goals in such a way that the cost of solving the reformulated goal can be less than the cost

of solving the original goal.

Example 1.3 Suppose a personal computer owner has numerous 256 [Kbyte

floppy disks, a 50 Mbyte hard disk, and the goal,

"Find all disk files larger than 1 lbyte."

S

6 CHAPTER 1. INTRODUCTION

S
Due to its size, no such file could possibly exist on a floppy disk, but would have
to be on the hard disk. The reformulated goal,

"Find all hard disk files larger than 1 Mbyte"

would (1) have the same set of solutions as the original goal and (2) presumably
be cheaper to solve than the original goal in that it avoids enumerating the

floppy disk files.

In the above example, the reformulated goal has the same set of solutions as the orignal,

but this need not be the case:

Example 1.4 Suppose the computer owner of Example 1.3 is given the goal,

"Find a disk file larger than 200 Kbytes."

If the owner knows that

"Most files larger than 128 Kbytes are on hard disk,"

he might reformulate the goal as, 0

"Find a hard disk file larger than 200 Kbytes."

The reformulated goal may eliminate some solutions to the original goal, but (1)
some solution is likely to be found, and (2) the reformulated goal is presumably
cheaper to solve than the original goal in that it avoids enumerating the floppy
disk files. The owner may choose to remember the original goal in case no
solition is found for the reformulated goal.

In both of the above examples, an original goal was constrained by additional require-

ments. In Example 1.3 the additional requirement (that the file be on the hard disk) is
logically implied by the goal G, any design decisions D (none in this problem), and the
known facts W about the world. The subclass of logically implied additional constraints
will be called ramifications. In contrast, the additional requirement in Example 1.4 is not
a logical implication of the goal and the known facts about the world; it is likely to be
true of any solution, but some solutions of the original goal may not be sulutions of the
reformulated goal. Such a constraint will be called a probable constraint.

The above examples can be characterized by taking a goal G and reformulating the
goal to be G A A. Chapter 3 develops the above notion of supersumption, the conjoining

1.1. OVERVIEW 7

of additional constraints to an existing goal or subgoal. Supersumption may be done with

any additional constraint, either necessary (that is, a ramification) or not, but the thesis

concentrates on ramifications alone.

The above reformulations via supersumption are not sufficient to bring about a speedup,

however. In additional there must be a strategy for taking advantage of the added constraint.

Example 1.5 Suppose the goal specification of Example 1.3 is written as

Find an x such that: File(x) A (Size(x) > IMbyte).

Addition of the ramification Hard-Disk-File(x) produces the goal

Find an x such that: File(x) A (Size(x) > 1Mbyte) A Hard-Disk-File(x),

but says nothing about how to use Hard-Disk-File(x) in speeding up the search.

A speedup is obtained only by specifying a processing method such that the x

such that Hard-Disk-File(x) are enumerated rather than the x such that File(x).

In this thesis, the only strategy considered will be reordering the conjuncts of a con-

junctive goal, the subject of research by David E. Smith [86,85].

1.1.3 Ramifications - Generalizing Constraint Propagation

As mentioned in Section 1.1.2, an important class of supersumptions is supersumption with

ramifications, that is, with constraints logically implied by the current goal G (as opposed to

the original goal), the world model W, and the design decisions D to date. A ramification N

of a goal G and design decisions D is a formula such that the goal has no solution (given the

design decisions to date) for which the ramification does not hold as well. In other words,

if D= D1 A...AD,,then N is a formula such that W H (DAG) D N.

Example 1.6 In Example 1.3, a personal computer owner has numerous 256

Kbyte floppy disks, a 50 Mbyte hard disk, and the goal,

"Find all disk files larger than 1 Mbyte."

As before, no such file could possibly exist on a floppy disk, that is, the condition

"the files are all on hard disk"

is a ramification of the above goal; there is no design for which the ramification

does not hold.

8 CHAPTER 1. INTRODUCTION

Ramifications and Consistency Checking Ramifications can be generated as a part of

checking consistency of a design, complete or incomplete. If a partial design is inconsistent,
there is no consistent complete design incorporating all the decisions of the partial design,

that is, some design decision has to be relaxed. If consistency checking were free, it would
always pay to know whether the current partial design is consistent. As it turns out,

complete consistency checking is in general intractable and can only be approximated. If
a problem is expressed in first-order logic, then inconsistent designs can be proven to be

inconsistent, but not in a bounded amount of time. In general, there is no way to be sure

that a design is consistent.

Inconsistency can be proven by showing that false logically follows from (1) D, the design
decisions to date, (2) G, the goal at hand, and (3) the world model W. In other words, if
false is a ramification of the current G and D, then the current partial design is inconsistent.

In the process trying to deriving false, one derives other ramifications. In Chapter 4 it is

shown exactly what other ramifications will be derived by various procedures for checking

consistency.

By recording ramifications, one gets additional information in answering the question,

"Is the design to date consistent?" Instead of a yes/no answer, one receives an answer of

"No," or an answer, "Yes, the partial design is consistent, but ramification A must hold for
all complete designs incorporating this partial design."

Ramifications and Constraint Propagation Finding ramifications may rightfully be
viewed as a generalized form of constraint propagation, a way to fit constraint propagation

into a deductive approach. Constraint propagation is usually thought of as a specific infer-
ences to be carried out when certain triggering conditions are met, for example in Waltz's

line labelling program [103,102]. in Stallman and Sussman's EL [90], or in Stefik's con-
straint posting [93,92]. In this research ramifications arc found via the general mechanism

of forward inference. Instead of making a specific inference, one faces a search problem with
difficult questions of (1) how to search and (2) what constitutes a useful ramification.

1.2 Approach and Scope of the Thesis

1.2.1 Deductive Synthesis

The approach taken in this thesis is that of deductive synthesis. Deduction is defined as, "the
act or process of reasoning, especially a. logical method in which a conclusion necessarily

1.2. APPROACH AND SCOPE OF THE THESIS 9

follows from the propositions stated."' Deductive synthesis refers to the construction of an
implementable specification of an object as part of the proof of a theorem that the object

meets a certain (possibly abstract) specification. In this thesis, the world model W, the
design goal G, and the design D itself are all represented as formulas or sets of formulas in
first-order predicate calculus, but they need not be; there is no reason not to do deductive
synthesis in some other logic (See, for example Konolige [46]). There are also numerous

alternatives to deductive synthesis systems (See, for example, Burstall [11], Manna and
Waldinger [60], Barstow [2], and Green [33]). The fact that a system is not deductive does
not mean that its output is more or less believable than a deductive system's output - a

deductive system's deductions are only as good as its axiomatization of the world.
Taking a deductive approach implies a declarative approach to knowledge representation.

In declarative approaches, there is a generally strict separation of control of search and
inference. Instead of expressing algorithms procedurally, one expresses a particular strategy
to control the search through the space of possible inferences, where the inference engine
is making inferences (sound or otherwise) from some body of information about the world.

The declarative approach has its roots in a number of Al systems based upon theorem
proving. Some notable examples are QA3 [32], STRIPS [25], and FOL [263. Pat Hayes'

early papers [39,38,37] on declarativism were also seminal. A declarativist view is part
and parcel of logic programming, and such a view has been embodied in such systems as
Prolog [78] and MRS [27,79. See also Kowalski [48,47] for early expressions of declarativism
as it related to logic programming.

In design synthesis, one hopes for a number of advantages in separating control knowl-

edge and world knowledge:

1. Knowledge about design components is expressed independent of its use. The set of
facts about design components need only reflect what is true in the world, and can be
checked independent of the design engine.

2. A different design engine, i.e., different control strategy or different inference engine, S
might use the same body of knowledge about the particular design domain. Research
on control of inference becomes applicable to particular problems of a declarative sys-

tem.

3. Evolution of knowledge about the domain does not require changes in the design e--
gine (although changes for the sake of efficiency might be advisable).

4. By compiling the set of inferences made by a particular design ejgine on a pairticular
set of rules, one can achieve the same speed as with procedural systems.

The American Heritage Dictionary, Dell Publishing Co., Inc., New York, NY, 198-3.

10 CHAPTER 1. INTRODUCTION

The above (or similar) claims for declarative representation have often been heard in the
declarative/procedural controversy that has been raging, on and off, since the early 1970's.
After fifteen years of dispute, the final results and outcome of the controversy are not entirely
clear. See, for example, Winograd [104], or the Handbook of Artificial Intelligence [1] for
discussions of the Declarative/Procedural Controversy. See McDermott [68] for the current
view of a discouraged declarativist.

1.2.2 Number of Solutions to a Problem

There are many sorts of goals6 for which a problem solver might be asked to find a solution.

Examples might include:

* Does there exist a file written in the last hour?

* Find all files written in the last hour.

" Find any file written in the last hour.

* Find 4 files written in the last hour.

" Find the largest file written in the last hour.

In the relational database literature, the standard problem is to find all tuples meeting some
criterion, for example, all files written in the last hour, or all flights between San Francisco
and Denver leaving between 1 p.m. and 4:30 p.m. on January 10. In contrast, design
problems usually require only one solution. We do not care about finding all circuits to
shift bits in a 24 bit word, in fact, there is usually an infinite number of solutions to such
problems, anyway. Instead, one must find at least one solution.

The residue approach is geared toward finding single solutions. By using an agentda
mechanism for its search, a residue procedure can also find multiple solutions. To find the
next solution, the procedure can simply be restarted with the agenda in the state where
it left off. '1i find all solutions, the residue procedure must be called until its agenda is

6 The word goal is commonly used in at least two ways. The goal might be a desired final state, or it
might be the path by which one arrives at that final state. Sometimes the final state is described in terms
of that path, as is the case in the single-term approach. In Chapters 2-5, goals are the former, that is, a
description of the final destination or state in which one desires to be. In this chapter, the word goal is used
a bit more loosely. For example, in the "goal types" enumerated below in the text, the notion of goal is
of yet another variety, that is, an expression of a task to be carried out; it falls into neither the first nor
the second notion of goal described above. Since the proper notion of goal is clear from the context in this
and other examples of the present, chapter, the different notions of goals will not be further distinguished.
In fiire chapters. goals will be specified according to the first notion, that is, a description of the desired
state for which we may find zero, oie, or many solutions.

1.2. APPROACH AND SCOPE OF THE THESIS 11

exhausted or it is known that all solutions have been found.7 Thus, for all of the above goal
types except the last, an agenda-based residue procedure can provide answers by simply

being called the appropriate number of times. The last goal type above is not covered in this
work because it requires an additional mechanism for looking over the set of all solutions

generated.

The notation for queries used in the rest of this thesis is adapted from D. E. Smith [85]
and is as follows: Queries are expressed in the form "find n v: g," where g is a formula
containing zero or more free variables, n is the number of solutions desired, or "all" if all
solutions are desired, v is the subset of the free variables in g for which values are required
(t be other free variables are assumed to be existentially quantified). If v is the entire set of

free variables in g, it will be omitted. Most queries will be expressed simply as a formula g;
this means that it is assumed that (1) all free variables are of interest, and (2) it is irrevelant
to the discussion whether one, some, or all solutions are desired.

Whether one needs all answers or just a single answer is important in considering search
methods. For problems requiring all solutions, the order in which the solution space is

searched is not important. As long as there is a possibility of finding an answer in some
corner of the space, that corner must be searched, and it does not matter whether it is
searched first or last. On the other hand, if one only needs to find a single answer to a
problem, it is best to look where an answer is most likely to be found quickest. In fact,
to find any proper subset of all the solutions, it is best to look first where answers will be
found the quickest. To illustrate the above phenomenon, consider the following example:

Example 1.7 Suppose

G(x) = File(x) A Name(x, chess) A Executable(x),

that is, x is an executable file named chess. Suppose also that it is known
that chess is a game, and that most executable files for games are on directory

/usr/games. If the goal is "Find all x: G(x)," it does not help to know that
most of the answers will come from /usr/games. On the other hand, if the goal
is "Find 1 x: G(x)," or "Find 10 x: G(x)," then it would be smart to begin the

search on /usr/games.

In finding a single solution for a conjunctive goal, all the solutions for a single conjunct
will be required in the worst case. Even so, it pays to find the easiest solutions first since
on the average not all the solutions will have to be generated.

lNote also that the order of the search can affect whether the search provides all answers or whether itloops.

12 CHAPTER 1. INTRODUCTION

1.2.3 The Qualification and Ramification Problems

Two major problems in design synthesis are the well-known qualification problem (Mc-

Carthy [65]) and its dual problem, the ramification problem (discussed below). At the

outset, let us note that these problems axe only indirectly addressed by using a declarative
approach. It has long been recognized that for any real-world design component to work
as expected, there are an unbounded number of prerequisites that must be fulfilled. This

problem is usually known as the qualification problem. The classic example is the "potato
in the tailpipe." A rule might say, "If a car has gas, turning the key in the ignition will
cause the car to start." The above rule names one prerequisite, namely, that the car has

gasoline. If, however, a potato can be put in the tailpipe of the car, the above rule is no
longer correct.' The rule might be fixed to include a "no potato in the tailpipe" prerequi-

site, but one can always find another heretofore unmentioned and obscure prerequisite that
might be violated in the real world.

A declarative approach to synthesis does not directly address the qualification problem.

It may explicitly name known prerequisites for a design component to behave as expected,
but in no way does it tell one what additional qualifications to a rule must be made. Thus,
via sound rules of inference, one can "prove" that a given design will meet its specifications,

but the proof has meaning only insofar as the descriptions of design components and their
behaviors actually describe the world.

A second problem endemic to design synthesis, whether declarative or otherwise, is the
ramification problem, a dual problem to the qualification problem. In general, a given design
not only depends upon an unbounded number of prerequisites (the qualification problem),

but it has an unbounded number of postrequisites, that is, of ramifications. Consider the goal
of removing a single file from a given directory. Removing all the files from that directors"

meets the goal specification,but is probably unacceptable.

In general, there is no way for a given goal specification to name all the postrequisites
that should not be true of a given design, and a declarative and/or deductive approach does
not directly address this problem any more than other approaches. 9

'One cannot help but note that the above "potato in the tailpipe" scenario is wrong. though well-
established in the Al literature. The car will start; it just will not run for very long (assuming yet other
conditions like "no holes in the exhaust system"). See Beverly Hills Cop for demonstration of the more
realistic scenario.

9 The residue approach of Chapter 2 does provide a convenient hook for checking for some undesirable

postrequisites, namely, the mechanism of consistency checking.

- 44

1.3. READER'S GUIDE 13

1.2.4 Best Fit Designs

This thesis considers the case of designs that meet a given goal specification. An interesting
class of problems are those in which the goal is overspecified - eve n though no design

is expected to meet the entire goal specification, one desires the design comipg closest to
doing so according to some metric. Examples of such problems are studied in Barbara Hayes-

Roth and Frederick Hayes-Roth's errand planning work [41] a rd in PROTEAN (Buchanan

et al [10,40]).
Although at ficst glance a deductive approach seems antithetical to "solving" overspeci-

fled problems, it need not be. Given a suitable metric for how much of a given goal has been

achieved by a certain design, one could consider deductive synthesis of solutions to parts

of an overspecified goal. Such problems are not considered further in this work, and to the
best of the author's knowledge, deductive approaches has not been explored for overspecified

goals.

1.3 Reader's Guide

Each of the main ideas presented in this chapter is covered in detail by a chapter of the
thesis. Chapter 2 covers residues and residue procedures, Chapter 3 covers supersumption,

and Chapter 4 is on finding ramifications. Each is designed to be as independent of the

others as possible. Chapter 2 and Chapter 3 both stand as independent units, and Chapter 4
has only a slight amount of dependence on Chapter 3. Chapter 5 concludes with a suinn'ary

of results, limitations and future work.

Chapter 2

Residue

This chapter presents design synthesis as a problem of finding residues. Section 2.1 discusses

design synthesis problems and their scope, after which Section 2.2 is devoted to a definition

of design synthesis as a problem in first-order logic. Section 2.3 describes procedures for

generating residues, examples of which are Ordered Residue, presented in Section 2.4, and

Resolution Residue, presented in Section 2.5. Ordered Residue, based on Horn Clause

Resolution, is the residue procedure used in the rest of the thesis. It is presented along
with a limited completeness result. Resolution Residue, based on full binary resolution, is

presented with stronger completeness results. Section 2.6 deals with constructing values for

existentially quantified variables in a goal specification. Section 2.7 compares and contrasts

the residue approach with the "single-term approach" that has been used in most deductive

synthesis systems to date. Section 2.8 compares and contrasts the residue approach to a

number of other recent systems, and Section 2.9 presents conclusions of this chapter.

2.1 Design Synthesis

There exists an almost unlimited variety of synthesis or design problems. Circuit design,

program design, robot planning, building design, chemical synthesis, and genetic synthe-

sis are a tiny subset of the multitude of problems in which primitive building blocks are

composed in such a way that the result meets a set of output specifications.

The terms synthesis problem, design problkm and design synthesis problem have been

used in numerous contexts. The present wvork makes no distiction among them (and uses

them interchangably), but it assurnc. the following general scenario:

There are two agents, a, d.signf r and a n implementor, not necessarily dis-

tinct. The designer is given a. specification (t lie goal) of the requirements of the

1.1

2.2. DESIGN BY FINDING RESIDUES 15

object (material or otherwise) the implementor will implement.' In addition,
the designer has information about components at the implementor's disposal,

and what the implementor is and is not capable of carrying out. The objective

of the designer is to map the original specification to another specification (the

design) such that the new specification (1) describes an implementation meet-

ing the original specification, and (2) describes the implementation process in

sufficient detail that the implementor is capable of carrying it out. 2

As emphasized in the above paragraph, design synthesis is a mapping of one set of
specifications to another; the design itself is merely another set of specifications. A useful
design will usually be a set of specifications at less abstract level than the specifications input

to tiLe design engine.

In any particular case, the criterion for what constitutes an adequate design specification

is a somewhat arbitrary. Usually, a given domain will have a language and set of conventions

specifying exactly what constitutes an adequate design. In building design, for example,
there is a standard set of drawings that must be submitted. These drawings do not specify

the construction or construction procedure to any ultimate level of detail. Instead, there is

a set of conventions as to the necessary level of detail. The architect does have to specify
the dimensions and building materials for the walls of a house. In general, he does not

specify what size nails to use or the order in which the nails are driven, although these facts
could in theory be part of the design. In short, there is a certain threshold of detail that is

agreed upon by the designer and implementor as being primitively achievable or assumable
- any such specification need not be further elaborated. An adequate design (or simply
"a design") can be thought of in these terms as consistent set of primitively achievable

specifications.

2.2 Design by Finding Residues

Design synthesis has long been approached as a problem of extracting a design from a proof.

W. S. Cooper's [18] 1964 system, and James Slagle's 1965 system DEDUCOM [84] were

perhaps the first steps in that direction. In 1969, Cordell Green's QA3 [32] and Waldinger

'To avoid confusion, the the object to be designed and the design specification itscf need to be distin-

guished. The use of the expression "speeding up the design," is also avoided as it is not clear whether the
design process is accelerated or whether the the object created by the design will run faster in some sense.

2 Another possibility is that the design output will be used as the specification for some other design
problem. In VLSI design, for example, one might synthesize a sticks level design that is ned as the input to
another design problem, namely, layout. Having specified the level of the second design, the design problem
remains the saine, however.

16 CHAPTER 2. RESIDUE

G Goal Specification

Operator Descriptions Design
W {State Descriptions einD, the design specification

Design Rules Engine (a set of assumable

A Language of formulas)

Assumables

Figure 1: Design Synthesis: A Mapping from One Set of Specifications to Another

and Lee's PROW [99,98] synthesis systems were both published. QA3 and PROW were

both resolution-based theorem-proving systems, formulating similar theorems to be proven,
but quite different in their answer extraction techniques. The approach developed in these
early systems (called the single-term approach in this thesis) has continued to be used to

the present. In constrast, this section presents an alternative approach to deductive design

called the residue approach.3 As explained in Chapter 1, the residue approach starts with
a goal G, world model W, and a language A of assumable specifications, and from these a
design , , *tion D must be found. The approach is illustrated in Figure 1 and its main
compo, described in the following subsections.

2.2.1 The Goal G

The object to be designed is described by a closed formula, G, called the goal or design goal.

For now, it will be assumed that the values for any existentially qualified variables are not
of interest. Later, in Section 2.6 it will be shown how values for existential variables can be
extracted from the proof of a residue.

Example 2.1 In a blocks world, consider the goal that some block be on top
of block B at some future time ti. If the current time is Ti, then the goal might

be expressed as the formula

G = 3 ti True(On(x,B),tf) A (t, >_ Ti).

'Chakravarthy [12,14] has used the term residue in a quite different manner as will be seen in Chapter 4.

2.2. DESIGN BY FINDING RESIDUES 17

Note that the above goal formula does not mention the design explicitly, but only says
what must be true at a some time in the future.

2.2.2 The World Model W

In every design problem, it will be assumed that there is a consistent set W of closed for-
mulas modeling the designer's knowledge of the world. In future sections, there will be
differing assumptions made about the allowed forms of the formulas in W, e.g., that the
formulas in W are implicitly quantified clauses o- Horn clauses. In the literature, a dis-

tinction is sometimes made between facts (generally meaning ground atomic formulas) and
rules (generally meaning conditi-nais, usually containing universally quantified variables).
No such distinction is made here.

The axioms of W are assumed to represent a number of different sorts of information,
the distirction between them being somewhat arbitrary:

" Operator Descriptions: axioinatization of the functionality of the components from
which objects may be synthesized. This set of components need not be the most basic

building blocks, but might be a hierarchy of possible components. In the blocks world,
W might contain the the following rule to describe a puton action:

Vx, y, t True(Clear(x), t) A
True(Clear(y), t) A

x yA

True(Handempty, t) A

Execution(puton(x,y), t) D True(On(x, y), t + 1)

Similarly, to describe one state of a NAND-gate x, W might contain:

Va, b,c,x,t NAND-gate(x) A

Input(x, 1, a) A

Input(x, 2, b) A

Output(x. 1,c) A
True(Value(a, "1"), t) A

True(Value(b, "1"),l) D True(Value(c, "0"),t)

" State Description: Facts about the state from which the object is to be constructed.

In synthesis of an electric circuit, one is usually constructing a circuit from scratch,

but for other synthesis problems, say a robot planning problem, a crucial part of the

18 CHAPTER 2. RESIDUE

problem is knowing the initial state, that is, the state in which the world will be when
implementation of the design (i.e., execution of the plan) begins. In addition, if other
re!evant state transitions will occur independent of the execuion of the design, these

must also be described.

The following formula might express that block A is initially on the table:

True(On(A, Table), 0),

or the fact that block B is fragile might be expressed as:

Vx, t True(On(x, B), t) D True(Broken(B), t + 1).

* Design Rules: Additional formulas may represent the allowed configurations of de-

sign components, for example, there might be a prohibition on two inputs to the same
NAND-gate:

Va,b,i,x NAND-gate(x) A

Input(x, i,a) A
lnput(x,i,b) D a = b

2.2.3 Assumables

As discussed in Section 2.1, for a design to be useful, it must be sufficiently detailed so that
the intended implementor is capable of carrying it out. In designing a house, "Bolt board A
to board B" is a primitively achievable goal; we need not further specify this operation.
In VLSI layout, we assume that as long as certain design rules are followed, any shape of

couductor can be put into the silicon. 4 Again, there is no need for the task to be specified

further.
For problems discussed here, it will be assumed that a primitively achievable instruction

is expressed as an atomic formula, ground or otherwise. Such primitively achievable instruc-

tions will be called assumables. Furthermore it is assumed that there exists a language A
of assurnables and an algorithm that decides in negligible time whether or not a formula

is in A. In practice, the language of assumables will be specified by a set of relations and
polarities (i.e., negated or not), such that any atomic formula with the appropriate polarity

4 \Vhcihcr the design works as intended is a function of its following the "design rules" for that. fabrication
proccs. It is assuned that such design rules are part of W and are guaranteed by the consistency requirement
(discussed in Section 2.2.5.

2.2. DESIGN BY FINDING RESIDUES 19

and relation is assumable. As stated in Chapter 1, it will be convenient to assume that A

is such that a conjunction A1 A ... A A, is assumable if each of the Ai is assumable.

Example 2.2 In the blocks world planning problem, the following schemata

might describe the language A of assumables:

Execution(<action>,< time>)
<time>, < <time2>

<time>, K <time2>

2.2.4 Definition of Design

Given the above discussion of a goal G, a world model W, and a language A of assumable

formulas, let us define a residue as follows:

Definition 2.1 (Residue) Given a consistent set W Gf well-formed formulas, a closed

formula G, and a -set of well-formed formulas D = { 1,..., DO}, D is a legal design if

1. W,D [G (Sufficient),

2. W U D is satisfiable (Consistent), and

3. For all Di E D, Di E A. (Assumable).

The requirement of sufficiency is straightforward - Given the world model W, the

goal G must be entailed by the world model and the design. The requirement of assum-

ability has been discussed in previous sections. Following an example, the requirement of

coLs.sitency will be discussed in Section 2.2.5.

Consider a simple example of a design using only propositional calculus.

Example 2.3 Suppose the set of assumable formulas, facts of the world model W.

and goal G are as below:

A: A,B,C,D,E,F

W: BAD- - J
DAE-'K

J1 A K - M

G: M

20 CHAPTER 2. RESIDUE

Given the above and rules, W U {B, D, E} k M, as illustrated by the series
of reduction steps below:

M

1 AJAK

I

BADAK

BADAE

The set of propositions {B, D, E} is consistent with W, that is,

W K -'(BADAE),

so {B, D, E} meets all three criteria of Definition 2.1, and is a residue for the

goal M given world model W and assumables A.

2.2.5 Consistency of the Design

Let us assume that the axioms in W accurately describe some portion of the real world.
Then, for some D, if W U D is unsatisfiable, one must assume that the Di cannot simul-

taneously describe the any configuration of the real world. As a minimum condition for
implementing a design, the consistency condition of Definition 2.1 must hold.

Example 2.4 Suppose W contains a rule saying that "No two actions can take
place simultaneously," i.e.,

Va, b,c,x,t Execution(a, tj) A
Execution(b, t2) D tl i t2-

By ignoring this rule, one might produce a plan for switching the positions of
two blocks A and B simply by saying, "Move block A to the location of block B
at time T", and "Move block B to the location of block A at time T," i.e.,

Execution(Move(A, B), T) A Execution(Move(B, A), T).

Given the usual axiomatizations of the Move operator, the goal logically follows
from a plan executing these two actions simultaneously, but there would be no
way to implement this plan in the real world.

2.2. DESIGN BY FINDING RESIDUES 21

In the above example, a design that was impossible to implement was disallowed. The

consistency requirement also acts to enforce design rules; if the design rules are not satisfied,
there is no guarantee that the object designed will behave as expected. For example,

it is possible to implement a VLSI layout that puts insufficent space between adjacent

conductors, but it probably will not work in the manner the designer planned.

One might ask, "Is there a way for a synthesis system to avoid the need for consistency
checking via careful axiomatization?" The answer is, "yes," but only in certain cases. This

issue will be discussed further in Section 2.7.

The Complexity of Consistency Checking In everyday life, given some flaw in a de-

sign, we presume we can eventually find it (given enough time and assuming we are capable
of understanding the flaw and its causes), but we cannot say that how long it will take to
find the flaw. In checking whether a design is consistent, the situation is exactly analogous.

Determining the satisfiability of a set of first-order formulas is a non-semidecidable problem.
In other words, there is no procedure that can take an arbitrary set of formulas and always
determine in a finite amount of time that the set of formulas is satisfiable. On the other

hand, showing that a set of formulas is unsatisfiable is semidecidable, that is, there are

procedures guaranteed to prove an unsatisfiable set to be unsatisfiable in a finite amount
of time. So, if a set of first-order formulas is inconsistent,5 we can eventually discover this

fact, but there is no way, in general, to ever be sure that a given set of facts is consistent.

The impact of the above phenomenon for a design problem is clear: either the language

of W, G and D must be restricted, or one must settle for less than perfect guarantees of
consistency. There are numerous useful subsets of first-order logic that are decidable, that

is, for which there exists an algorithm for deciding in a bounded amount of time whether or
not a given formula is valid (and as a result, whether a given set of formulas is consistent).

Besides the obvious example of the propositional calculus, Mann. [57], page 107, gives many
examples of other decidable subsets of the first order predicate calculus.

Non-Guaranteed Consistency Checks Although checking consistency of a set of facts
in intractable, for a given problem at the least one hopes to find some way to do an accept-

able, though imperfect job of checking that a design wiHl behave as expected.
For a given W and D it is possible that all search paths will be exhausted in trying to

show that W k -ID, where D is the conjunction of all Di E D. In such a, case, the design D
is consistent with W. Failing this, one would like to assume that given an inconsistent

"Inconsistency and unsatisfiability are equivalent conditions in first-order logic, as was proven by CWdel
in 1930. 1

22 CHAPTER 2. RESIDUE
IL

Valid Formula
True under all interpretations

(Semidecidable)

Satisfiable Formula
True under some interpretations

(Non-semidecidable)

Unsatisfiable Formula
True in no interpretations

(Semidecidable)

Figure 2: Valid, Satisfiable, and Unsatisfiable Formulas of First-Order Logic

design D, the likelihood of proving the design inconsistent increases monotonically with the

amount of time spent in checking consistency. In other words, one might want to assume

that if no inconsistency is found after spending one minute of cpu time, it is quite unlikely

that the design is inconsistent; if after two minutes inconsistency has not been proven, it is
even less likely that the design is inconsistent.

Given the above assumption, a residue procedure can legislate the amount of time or

space spent looking for inconsistency before declaring the design to be consistent. Such

a decision might also be based on the course of the proof, i.e., whether or not it looks
"promising" that the design will be proven inconsistent, although that possibility will not

be considered further here.

Finally, for a given problem it might be reasonable to rely on some ad hoc method of

consistency checking. One may choose to enumerate the classes of potential problems and

check only these possibilities. The checking can be via arbitrary procedures rather than by

any logical inference. The "critics" of Sussman's HACKER [94] or Sacerdoti's NOAH [811 are

typical of such an approach.

Example 2.5 Consider building a combinational circuit out of a set of wires

2.3. RESIDUE PROCEDURES FOR DESIGN SYNTHESIS 23

and NAND-gates. There are a limited number of ways the system can go wrong,

i.e., that is, fail to act as expected in spite of the correct wires being in place:

1. There may be a loop in the circuit.
2. There may be more than one output connected to a single input.

The above two design rules can quickly be checked, and assuming that they are
not violated, the designer may be willing to assume (or "legislate") that the
circui will work as expected.

2.3 Residue Procedures for Design Synthesis

The previous section formulated design synthesis as the problem of finding residues for

a goal G, a world model W, and a language of assumables A. The current section and

the two following describe two procedures for finding residues. This section describes the

notions common to the entire class of what might be called "residue procedures." Section 2.4

presents Ordered Residue, a residue procedure based upon backwards inference very similar

to that done in MYciN [82,9] and Prolog 178]. Ordered Residue will be used extensively in

later chapters. Section 2.5 presents Resolution Residue, a more general residue technique

using binary resolution [76] as its backwards inference technique. Appropriate completeness

results are proven for each.

Figure 3 is a high level description of a canonical residue procedure. The central idea is
that the original goal G is reduced to other goals6 via a sequence of goal reduction 7 steps

until an assumable goal is found, that is, a goal for which D E A. In Figure 3, the reduced

goal is represented by the symbol D to emphasize the fact that any goal is potentially a
proposed design. If, at any time, the reduced goal/design is inconsistent (that is, W k -D),
then this path can be pruned; further reduction steps cannot make the inconsistent design

consistent.

The step "D - Goal Reduction(D)" in Figure 3 is nondeterministic. On each iteration
through the loop, the goal reduction step may produce none, one or many new goals D.

fit is tempting to say, "the goal G is reduced to various subgoals," but the term "subgoal" has a very
specific (and different) meaning in logic programming, namely, a goal is a conjunction of literals and a

subgoal is one of the conjuncts. To avoid confusion, the word "subgoal" will usually be avoided here. In the
rare instances in which the word "subgoal" appears, it will refer to the entire goal to which another goal has
been reduced.

'Goal reduction known by many other names in the literature, among them backwards inference, goal-

directed reasoning, subgoaling, top-down reasoning, goal regression, and consequent reasoning. Here, the
terms "goal reduction" and "backwards inference" will be used interchangably.

24 CHAPTER 2. RESIDUE

C Start

D

CossetWUjj? n Fail i

iI

D -Goal Reduction(D)

Figure 3: Simplified View of a Residue Procedure

S

Vl 1,1, [, "

__;ii'' Il ... , r, ,

2.3. RESIDUE PROCEDURES FOR DESIGN SYNTHESIS 25

HAIAJ

KALDH NAPDH

MDK
K LAIAJ pNAPAIAJ

M MALAIAJ

Figure 4: Goal Reduction Steps

Each of the new goals D is a new path in the space of possible goal reductions from the

original goal G. If for some D no goal reductions are possible, that path simply halts without

returning an answer.

Example 2.6 Consider the goal G = H A I A J, where W contains the axioms

K A L D H, M D K, and N A P D H. Figure 4 shows possible goal reductions

that might be made. Each node shown represents a point in the space searched

by the nondeterministic step "D <- Goal Reduction(D)."

The "Consistent(D)?" steps in the flowcharts describe a program step solving an in-

tractable problem, an obvious impossibility. "Consistent(D)?" should be understood to

refer to the heuristic approach (described in the previous section) being used in the particu-

lar problem to approximate deciding whether W = -,D. Note that the consistency checking

step appearing in the loop is not needed for correctness of the procedure, but only to prune

goals that are inconsistent as soon as possible. In practice, one may chose to eliminate tli.

step entirely or make it a minimal sort of check.

For simplicity's sake another fiction that has been allowed in Figure 3. Every reduced

goal in the figure springs from exactly one previously existing goal. It is possible, however,

to use more than one goal Dj,..., Dn to find a new goal D' such that W U {D} k G. Such

is the case in Resolution Residue, but the distinction is not crucial here.

The rest of this chapter concerns itself with the goal reduction component of residue pro-

cedures and is independent of the consistency checking. iW future chapters, goal reduction

(as opposed to consistency checking) will sometimes be called the "backwards component"

of the residue procedure because it consists of backwards inference from a goal descrip-

tion. Consistency checking will sometimes be referred to as the "forward component' of 5

26 CHAPTER 2. RESIDUE

the procedure, since one can think of consistency checking as forward inference from the set

W U {D} - if false is derived from W U {D}, then D is not a consistent design. As can be
seen from Figure 3, the forward and backwards components compete for resources. Chap-

ters 3 and 4 will generalize consistency checking and deal with the competition between the

forward and backwards components.

2.4 Ordered Residue

This section presents the Ordered Residue procedure. In a nutshell, Ordered Residue is
the residue procedure obtained by performing backwards inference via Ordered Resolution

on Head-First Ordered Horn Clauses under the set of support restriction. All of these
terms will be defined later in this section. In addition, Ordered Resolution under the above

restrictions is a close relative of Prolog [781 as will be discussed in Section 2.4.4.

2.4.1 Ordered Resolution

In the literature on resolution, clauses axe variously defined as sets or bags of literals, and

they may be ordered or unordered. For Ordered Resolution,8 a clause is a sequence of

distinct literals, that is, an ordered set. Definitions 2.2-2.4 are from Chang and Lee [15].

Definition 2.2 (Ordered Clause) An ordered clause is a sequence of distinct literals.

Definition 2.3 A literal L2 is said to be greater than a literal L1 in an ordered clause (or
L1 is smaller than L2) if and only if L2 follows L1 in the sequence specified by the ordered

clause.

Ordered Resolution is defined with Definitions 2.4-2.6.

Definition 2.4 (Ordered Factor) If two or more literals (with the same sign) of an
ordered clause C have a most general unifier a, then the ordered clause obtained from the

sequence Ca by deleting any literal that is identical to a s, Per literal in the sequence is

called an ordered factor of C.

Definition 2.5 (Ordered Binary Resolvent) Let C, and C 2 be ordered clauses with no
variables in common. Let L1 and L2 be the smallest literals in C1 and C2, respectively.

If L, and -,L 2 have a most general unifier a, and if C is the ordered clause obtained by
6 The resolition rule defined here is a variant of Boyer's Lock Resolution [5], and it differs significantly

from Ordered Resolution as defined in Chang and Lee [15], page 113.

'11111,111111 M Q U 11,1

2.4. ORDFRED RESIDUE 27

concatenating the sequences Cla and C2a, removing Ljca and L2a, and deleting any literal

that is identical to a smaller literal in the remaining sequence, then C is called an ordered
binary resolvent of C1 against C2. The literals L, and L 2 are the literals resolved upon.

Definition 2.6 (Ordered Deduction) A clause C is said to be d- duced via an ordered

deduction from base set S of ordered clauses if and only if there is a tree T such that C is
in T, every node in the fringe of T is a member of S, and for every other node D either:

1. D has one parent P, an(I D is an ordered factor of P, or

2. D has two parents P and Q, and D is an ordered binary resolvent of P against Q.

Soundness of Ordered Resolution follows from the set of allowed steps being a subset of
the allowed steps in ordinary Binary Resolution. Treitel and Genesereth [95] have proved
the following completeness theorem:

Theorem 2.1 (Completeness of Ordered Resolution on Horn Clauses) [Treitel
and Genesereth] A set S of ordered Horn clauses is unsatisfiable is and only if there is

an ordered deduction of the empty ordered clause El from S.

Ordered Residue uses the set of support restriction, defined as follows:

Definition 2.7 (Set of Support) A subset T of a set S of clauses is called a set of support

of S if S - T is satisfiable. An (ordered) set of support resolution is an (ordered) resolution

of two clauses that are not both from S - T. An (ordered) set of support deduction is a

deduction in which every (ordered) resolution step is an (ordered) set of support resolution.

Unless otherwi-- stated, the initial set of support T is understood to be the set of clauses

from the negation of the goal.

Ordered resolution is complete for Horn clauses, but unfortunately it is not compatible

with the set of support restriction unless the positive litcal is always the smallest (first)

literal in the clause. (Consider the following example:

Example 2.7 Suppose we have a database

{B D A,B}

and a goal A. This would correspond to the unsatisfiable set of ordered claum Fs

{-A, -B VA, B},

28 CHAPTER 2. RESIDUE

and initial set of support {I-A}. Ordered resolution would not be able to

prove this set unsatisfiable under the set of support restriction since the or-

dered clause -iB V A does not resolve with -,A. If the ordered clause -,B V A

were replaced with the ordered clause A V -B, then there would be an ordered

refutation for this set.

(although an ordered clause A V-'B would succeed since it can resolve with -A).

We give the name HOH-clause to Horn clauses with the first literal being the positive

one.

Definition 2.8 (HOH-Clause) A Head-first Ordered Horn clause (HOH-clause) is an

ordered clause such that all literals in the sequence are negative with the possible exception

of the first, which may be positive.

Given a formula such as B A C A D D A, any (or all) of the HOH-clauses below might
be found in thte database:

A V -'B V -'C V -'D

A V -'B V -,D V -'C

A v -'C V -'B v -'D

A V -'C V -'D V -'B

A V -,D v -'C V -'B

A V --D V -'B V -'C

For Ordered Resolution on HOH-clauses, the set of support restriction preserves com-

pleteness, as has been proven by Treitel and Genesereth [95]:

Theorem 2.2 [Treitel and Genesereth] Given a goal G such that the clauses of -,G

contains only negative literals, a database W of HOH-clauses, and using the ordered clauses

from -'G as the initial set of support, there exists an ordered deduction of the null clause 0

from base set W U Clauses(G) and initial set of support Clauses(G) if and only if W G.

2.4.2 Ordered Residue Procedure

In order to use ordered resolution for generating residues, it is necessary to somehow

notice negated assurmables as the first literal and move them so that the assuinable does

not prevent other literals in the clause from being used in subsequent ordered resolution

0 1 1

2.4. ORDERED RESIDUE 29

Stant

I
F - me CE T; T

n

For all B such that
Assumabie-Rotation(C,B) ur

Figure 5: The Ordered Residue Procedure

30 CHAPTER 2. RESIDUE

steps. On, ;irnplo way to accomplish this goal is to allow the rotation of a negated as-

sumable from the first literal to being the last literal. Let us define a relation called

Assumable- Rotation(a, b) as follows:

Definition 2.9 A pair of ordered clauses a and b is a member of the Assumable-Rotation
relation if and only if for ordered clause a = a, V ... V am, -ial is an assumable, and

b = a2 V ... V am V a,.

In other words, b has rotated the first literal of a to the rear. Such a rotation can not change
completeness of Ordered Resolution since it only adds to the range of possibilities. Such a

rotation also preserves soundness, as the meaning of a derived clause is not a function of

the clause's order. The Ordered Residue Procedure may then be defined as in Figure 5.

The "Choose some C E T" step has not been fully specified. The implementation of
this step controls the search, e.g., by always choosing the most recently added member of T,

one obtains a depth-first behavior. Similarly, by always choosing the least recently added

member of T, one obtains a breadth-first search. Note also that the clause C chosen is
removed from T after being chosen; there is no further need for it.

2.4.3 Completeness of Ordered Residue

The completeness results of this section and of Section 2.5.3 are expressed in terms of

one clause subsuming another. The definition of subsumption is the same for ordered and
ordinary clauses, treating them both as sets of literals.

Definition 2.10 A clause C subsumes a clause D if and only if there is a substitution o

such that Ca C D. D is called a subsumed clause.

The main result of this section can now be stated:

Theorem 2.3 (Completeness of Ordered Residue on HOH-clauses)

Given a residue D for world model W, goal G, and assumable language A, where
W is a satisfiable set of HOl-clauses,

G = G v ... v G,,, where the Gi are conTjunctions of positive literals, and

D {DI ,..., D,} is a set of atomic assumables,

there exists an ordered set of support deduction of a clause A = -a, V ... V -'aq from

initial set of support Clauses(-'G) such that {al,.... a} is a residue for W, G. and A and

such that A subsumes -D 1 V ... V -'D,.

2i

2.4. ORDERED RESIDUE 31

Before proving Theorem 2.3, a number of other results will be helpful. The following

"lifting lemma" (as stated in Wos et al [106]) is the appropriate formulation for a resolution
systems with separate resolution and factoring steps. It differs from the common formulation

found in Chang and Lee [15].

Lemma 2.4 (Lifting Lemma) [Robinson] If A' and B' are, respectively, ground in-
stances of (ordered) clauses A and B (which are assumed to have no variables in corn-
mon), and if C' is a (ordered) resolvent of A' and B', then there exist (ordered) clauses E
and F such that an application of (ordered) binary resolution to E and F yields a clause C,

where C' is an instance of C, and where E = A or is a factor of A and F = B or is a
factor of B.

In addition, Herbrand's Theorem will be used:

Lemma 2.5 [Herbrand] A set S of (ordered) clauses is unsatisfiable if and only if there
exists a finite set of ground instances of ,S that is truth-functionally unsatisfiable.

Finally, the following lemma will be useful.

Lemma 2.6 For any formulas G and A, if there exists a derivation of a clause -,A from
base set W U Clauses(-,G), then W, A = 1G.

Proof: Let us define Go = G1 V.. .VGm, where Clauses(-'G) = {-iG,,..., Gml.

By the soundness of resolution, the derivation of -,A means that

W,-G 0 f= --A. (2)

Via the deduction theorem and a series of equiavalences we get

~W -Go D -,A (3) -

W (3A) D (3Go) (4)

W,3A p 3Go (5)
W, A 3(G v ...v G,,). (6)

Formula (6) is the desired formula. It says that there exists some solution to G

for any values of the free variables of A. I

32 CHAPTER 2. RESIDUE

Proof of Theorem 2.3 Case I: (W 1= 3G)

The theorem is vacuously true for this case. Let D be the null set. Then we have

1. D subsumes {}
2. W U D is satisfiable.
3. WUD [= 3G.

Case II: (W 4 3G)

Let M = W U D U Clauses(-,G). Since W U D H G, M is unsatisfiable. By Herbrand's

Theorem (Lemma 2.5), there must exist some unsatisifiable set M0 of ground instances

of M. Let Mw be the subset of clauses in M 0 from W, MD be the subset of clauses in

Mo from D, and MG be the subset of clauses in M0 from Clauses(-iG). Since W U D is

satisfiable, Mw U MD is satisfiable and MG is non-empty. By Theorem 2.2 there exists an

ordered set of support refutation Ro of Mo using MG as the initial set of support. Since

W K- 3G, Re contains at least one clause from M!) in its fringe.

Consider now the following two lemmas:

Lemma 2.7 Given two ground ordered clauses A' and A' for which C' is an ordered binary

resolvent, then there exists an ordered binary resolvent C for ordered clauses A, and A2,

where A1 is any ordered clause consisting of the same sequence of literals as A' with some

(possibly empty) set Z1 of ground literals anywhere interspersed in its sequence except the

first position, and A2 is any ordered clause consisting of the same sequence of literals as A2

with some (possibly empty) set Z2 of ground literals anywhere interspersed in its sequence

except the first position. Furthermore C consists of the same sequence of literals as C with

some (possibly improper) subset of Z1 U Z2 interspersed in its sequence.

Proof: Since the first literals of A' and A') are unchanged in A, and A 2, A1

and A 2 can be resolved as were A' and A'. The resulting ordered clause C will

be identical to C' except for the additional negated literals introduced by A,
and A'. Furthermore, C - C' C Z1 U Z2 since some of the literals introduced by

Z, or Z2 may be deleted if an identical and smaller literal is present.

Lemma 2.8 Given a ground ordered clause A' for which C' is an ordered factor, then there

exists an ordered factor C of ordered clause A, where A consists of the same sequence of

literals as A' with some (possibly empty) set Z of negated ground literals interspersed in its

sequence, and C consists of the same sequence of literals as C' with some (possibly improper)

subset of Z interspersed in its sequence.i i i i i i l ' l l l l l l l 1 0

2.4. ORDERED RESIDUE 33

Proof: For ground ordered clauses, factoring consists only of deleting dupli-

cate literals. The literals of additional literals from Z can not affect a preexisting

possible factorization. I

Consider some a E MD, that is, a ground atomic assumable appearing in R0 . R0 can

be modified by eliminating an ordered resolution of a set of support ordered clause -'a V B

against a ground assumable a. Instead of using the resolvent B, by Lemmas 2.7 and 2.8

a corresponding ordered set of support derivation R, can be constructed with the negated

assumable -a left in the tree and allowed to percolate toward the top. To build the tree,

note that it usually will be necessary to rotate negated ground assumables such as -,a to

the end of ordered clauses. Taking R1, one can repeat the process constructing R2,..., Rp

until all members of MD have been eliminated from the fringe of ordered set of support

deduction Rp. RP is then an ordered deduction of some clause Cp from base set Mw U MD

such that (1) Rp consists only of negations of ground atomic assuniables from MD, and (2)

RP is a set of support deduction with initial set of support MG.
By the Lifting Lemma (Lemma 2.4), Rp can be converted to another set of support

derivation D; such that the fringe consists of ordered clauses from W U Clauses(-,G). The

root of D; is given by CpO-1 = -,a' V ...- a' for some substitution 0, where the a are

atomic formula from D with some of the constants in these formulas possibly replaced by

variables. Thus for each a:, there exists some substitution 0 such that a ¢ E D.

So,

1. -,a' V ... -a' subsumes -D 1 V ...-iDn

2. W U {a',..., a,} is satisfiable since it has a satisfiable instance Mw U MD

3. WU{a ,...,a'} 3G by Lemma 2.6.

2.4.4 Relation to Prolog

As stated earlier, the set of steps allowed by Ordered Resolution is closely related to the

set of steps made by a Prolog Interpreter [78]. Looking at the search space of Prolog as

an AND-OR tree, with conjunctions of literals to solve via disjunctions of' possible ways

to reduce the literals, Prolog considers both conjunctions and (lisjlc.tions in deptih-first

fashion. In other words, given a goal (that is, a conjunction to be solved)

A A 13 A C,

34 CHAPTER 2. RESIDUE

Prolog will completely solve (either find an answer for or else fail on) A before considering

B. Given rules (that is, a disjunction of possible ways to solve the conjunct A)

A :-E,F,G

A :-H,I,J,K

A :-L, M, N,

Prolog will also exhaust possibilities for finding answers to A via the first of the rules before

considering the second. Thus, given a goal and an ordering of the rules in the database,

Prolog specifies precisely the order in which inference steps may be made.

Ordered Resolution is similar to Prolog in handling goal conjuncts in order, but differs
from Prolog in not specifying the order in which various rules may be applied. It will tilrn

out that this depth-first ordering on conjuncts is important to the techniques of Chapters 3
and 4, but there is no need in this work to specify the order in which possible goal reductions

on the same conjunct are tried.

2.5 Resolution Residue

Of the many inference techniques one might use as the backwards inference engine of residue,

perhaps the most obvious one is binary resolution (Robinson [77]). Binary resolution (usu-
ally just called "resolution" for simplicity) has been greatly studied for two decades and

is very well understood. In addition, it is easily implemented, and is refutation complete.
To use resolution as a barkwards inference technique, the set of allowed resolutions must
be restricted since unrestricted resolution allows many more inferences than just backwards
inference steps. Fortunately, one of the best known restrictions on resolution, the set of
support restriction (Wos et al [1051), is exactly that - a restriction on resolution allowing

only backwards inference steps. As shown by Wos, et al, the support restriction preserves
refutation completeness. We might informally say that this results means that that one can
walk a given search path from the goal to the initial state just as well as from the initial to

the goal state.

The remainder of this section explores using resolution under the set of support restric-
tion as the sole backwards inference technique in residue. The procedure so derived will be
called Resolution Residue and is illustrated in Figure 6.

2.5. RESOLUTION RESIDUE 35

Start

T u ss-G)

e ET; T-T C

n

[For all B such that
Factor(C,B) or
Resolvant(C',E,B) Consistent(W U {-C))? Return(-C)

for some E E W
T .- Tu {B)

Figure 6: The Resolution Residue Procedure

36 CHAPTER 2. RESIDUE

2.5.1 Definitions

The definitions below are one standard formulation for binary resolution, differing from

Robinson's original formulation in having separate factoring and resolution steps.' As
contrast to Ordered Resolution, clauses are treated here as sets of literals rather than

sequences. Somewhat different presentations of resolution and the set of support restriction
may be found in texts by Chang and Lee [15], Manna [57], and Wos, et al [106].

Definition 2.11 (Factor) If two or more literals (with the same sign) of a clause C have

a most general unifier a, then Ca is called a factor of C. If Ca is a unit clause, it is a

called a unit factor of C.

Definition 2.12 (Binary Resolvent) Let C1 and C2 be two clauses (called parent clauses)
with no variables in common. Let L1 and L2 be two literals in C1 and C2, respectively. If

L1 and -,L2 have a most general unifier o, then the clause

(Cia' - L o) U (C2o - L 20)

is called a binary resolvent of C1 and C2 . The literals L1 and L2 are called the literals

resolved upon.

Binary resolvents usually are simply called resolvents.

Definition 2.13 (Deduction) Given a set S of clauses, a (resolution) deduction of C
from S is a finite sequence C 1 , C 2 , ... , Ck of clauses such that each Ci is either a clause

in S, a binary resolvent of two clauses preceding Ci or a factor or a clause preceding Ci. A

deduction of the null clause 0 from S is called u refutation of S.

Theorem 2.9 states Robinson's well-known result that resolution is sound and refutation
complete. It is given here without proof.10

Theorem 2.9 [Robinson] (Completeness of the Resolution Principle) A set S of

clauses is unsatisfiable if and only if t.here is a deduction of the empty clause 0 from S.
9The definitions here are similar to Loveland's [52] formulation of resolution.

1 Because the formulation of resolution differs from Robinson, one must be careful in claiming his sound-
ness and completeness. The formulation here defines factors and binary resolvants identically to Chang and
Lee, but differs from Chang and Lee's definition of deduction in allowing separate factoring steps rather
than only combined factoring-resolution steps. If one is willing to rely on the completeness result proven
in Chang and Lee, it is clear that allowing a superset of Chang and Lee's steps cannot hurt completeness.
In addition, since factoring steps are sound, soundness is preserved as well. Actually, tLhe formulation of
resolution here is identical to that of Loveland [52] in which clauses are sets of literals, and resolution and
factoring steps are separate.

2.5. RESOLUTION RESIDUE 37

Theorem 2.10 is an important result from Wos et al [105], that of the completeness of
the set of support strategy (Definition 2.7): 11

Theorem 2.10 [Wos] (Completeness of the Set of Support Strategy) If S is an
unsatisfiable set of clauses and T C S such that S - T is satisfiable, then there exists a

refutation of S with set of support T.

2.5.2 The Resolution Residue Procedure

Figure 6 gives the procedure for Resolution Residue, with Resolvent(C, D, E) meaning 0
that E is a binary resolvent of clauses C and D according to Definition 2.12 and Factor(C, E)

meaning that E is a factor of clause C according to Definition 2.11. As illustrated in Fig-
ure 6, Resolution Residue follows the set of support restriction on an initial set of support

of clauses from -nG.

2.5.3 Completeness of Resolution Residue

This section closely follows the proof of completeness of Ordered Residue on HOH-clauses
in Section 2.4.3. The completeness theorem for resolution residue is as follows:

Theorem 2.11 (Completeness of Resolution Residue)

Given a residue D for world model W, goal G, and assumable language A, where
W is a satisfiable set of clauses,

G = G, V ... V G , where the Gi are conjunctions of literals, and

D = D1,..., D,,} is a set of atomic assumables,

there exists a set of support deduction of a clause A = -a, V ... V -,'a from initial set
of support Clauses(-,G) such that {al,... , aq} is a residue for W, G, and A and such that

A subsumes D1 V ... V -On.

Proof Case I: (W k 3G)

The theorem is vacuously true for this case. Let D be the null set. Then we have

1. D subsumes {}
2. W U D is satisfiable.

3. WuD k 3G.

"The wording here is from Loveland [52].

0

38 CHAPTER 2. RESIDUE

Case II: (W K 3G) 0

Let M = W U D U Clauses(-iG). Since W U D k G, M is unsatisfiable. By Herbrand's

Theorem (Lemma 2.5), there must exist some unsatisifiable set M0 of ground instances

of M. Let Mw be the subset of clauses in M0 from W, MD be the subset of clauses in

M 0 from D, and MG be the subset of clauses in M0 from Clauses(-iG). Since W U D is

satisfiable, Mw U MD is satisfiable and MG is non-empty. By Theorem 2.10 there exists a

set of support refutation Ro of Mo using MG as the initial set of support. Since W K 3G,

Ro contains at least one clause from MD in its fringe.

Consider now the following two lemmas:

Lemma 2.12 If ground clause C' is a resolvent of ground clauses A' and A' and A1 and A2

are such that A1 = A' U Z1 and A 2 = A'2 U Z2 for sets Z1 and Z2 of ground literals, then

there exists a ground literal C = C' U Z1 u Z2 such that C is a resolvent of A1 and A 2.

Proof: A1 and A 2 can be resolved using the same literals as was used in

the resolution of A' and A". The resulting clause C' will be contain every literal

of C' and in addition, will contain any extra literals from Z1 and Z2. I

Lemma 2.13 Given a ground clause C' that is a factor of ground clause A', then there

exists a factor C = C' U Z of ground clause A = A' U Z, where Z is some (possibly empty)

set of ground literals.

Proof: For ground clauses, factoring consists only of deleting duplicate liter-

als. The literals of additional literals from Z can not affect a preexisting possible

factorization. I

Consider some a E MD, that is, a ground atomic assumable appearing in R0 . RD can

be modified by eliminating a resolution of a set of support clause -,a V B against a ground 0

assumable a. Instead of using the resolvent B, by Lemmas 2.12 and 2.13 a corresponding

set of support derivation R1 can be constructed with time negated assumable -1a left in

the tree and allowed to percolate toward the top. Taking Rm, one can repeat the process

constructing R2 ,.. .,RP until all members of MD have been eliminated from the fringe of

ordered set of support deduction RP. RP is then a deduction of some clause C, from base

set Mw U MD such that (1) Rp consists only of negations of ground atomic assunables

from MD, and (2) Rp is a set of support deduction with initial set of support MG.

By the Lifting Lemma (Lemma 2.A), R, can be converted to another set of support

derivation Dp such that the fringe consists of' clauses from W U Clauses(-'G). The root

0

2.6. RESIDUE WITH ANSWER EXTRACTION 39

of D; is given by CpO-' = -,a' V ... -a for some substitution 0, where the a are atomic
formula from D with some of the constants in these formulas possibly replaced by variables.

Thus for each a , there exists some substitution 0 such that a O E D.

So, we have

1. - a' V .. . -a' subsumes -'D1 V . . D

2. W U , a'} is satisfiable since it has a satisfiable instance Mw U MD

3. WUf{a.,.. .,a} = 3G by Lemma 2.6.

1

2.6 Residue with Answer Extraction

Given a residue D for a goal G, we know that the union W U D is sufficient to entail G.
But, if G contains existentially quantified variables, it is sometimes desirable to know for

what value of these variables the goal has been proven.

Example 2.8 The goal "Put a block on top of block A" might be stated as the

goal

G = 3x, t True(On(x, A), t) A (t > To).

Given some world model W and residue D, one knows that some block can
be placed on block A, but without knowing which block x or at what time t.

Knowing the value of t, x, or both might be important.

It is not always the case that there is a single variable binding that can be given as the
value of an existential variable. Suppose a database contains the axiom

Dog(Fido) V Dog(Rover),

one is given the query

3x Dog(x).

It can be proven that there is a dog, but it is impossible to say more than "Either Fido is

a dog or Rover is a (log," that is, x = Fido V x = Rover. Such disjunctive variable bindings

are called indefinite answiers [75] in the database literature.

Cordell Green's method of answer literals [30,311 is well known for extracting such

answers from resolution refutations. For each clause of the negation of the goal, the literal
Ans(x) is added, where x is an existentially quantified variable of G whose value is of interest.

011[111 1 '. - '

40 CHAPTER 2. RESIDUE

If there exists a resolution refutation T of --G, then a corresponding deduction tree T' can

be built starting with G D Ans(x), that is, with the answer literal Ans(x) added to each

clause in the negation of G. The root of T' is a clause

Ans(ai) V... V Ans(an),

where it can be shown that W J= G for x equal to at least one of the ai.12 If there is a

definite binding for x = a for which W j= G (as proven by refutation T), then a unit clause

Ans(a) will be the root of T'.

David Luckham and Nils Nilsson [54] found a slight generalization of Green's method in
which they substitute the tautology Ci V -,Ci for each clause Ci of -,G. Building a deduction

tree via the same set of resolution and factoring steps as in the refutation of -,G, Luckham

and Nilsson deduce a disjunction of one or more formulas -ICi, but with the appropriate
variables filled in with values used in the refutation. Since each such expression -'Ci is an

instance of the goal (or a disjunct of the goal), one can extract appropriate values for each
variable of interest. Luckham and Nilsson show that the answers they obtain are at least as

general as those of Green (in the sense of binding variables with as little restriction on their
values as possible). In addition, for considering values for several variables, Luckham and

Nilsson's method returns disjunctions of bindings for each of the variables. In other words,

if existential variables x, y and z appear in G, Luckham and Nilsson's method extracts a

disjunction of triples of values, {x 1 , Yl, zl} V ... V {xn, yn, z,} rather than a disjunction of

values for each variable separately. See Nilsson [72] for a more detailed exposition of this

method.

Given an answer extraction method such as Green's of Luckham and Nilsson's, we

might ask whether or not such a method can be used to find values for goals to a residue

procedure. The proofs will not be presented here, but neither Green's nor liickham and

Nilsson's answer extraction techniques depend upon the deduction being a refutation (that

is, a deduction of the null clause 0), and thus, either iuethod is applicable to both Ordered

Residue and Resolution Residue.

For Ordered Residue, all extracted answers will be definite as well. Indefinite answers in

resolution proofs can occur only when two clauses in the set of support are resolved against

each other. Since all clauses in the initial set of support have only negative literals, and

resolution against HOH-clauses preserves this condition on the set of support, then no two

clauses in the set of support can ever be resolved against each other.

"As first suggested by Waldinger [49], indefinite answers can be avoided by generating a conditional
whenever two clauses that have the saine answer literals are resolved. Waldinger and Lee's PROW [99]
generated conditionals in this fashion, and Green later incorporated conditional generation in QA3.

- -I

2.7. DISCUSSION 41

2.7 Discussion

The previous sections of this chapter presented both an approach to design and two residue

procedures for generating design descriptions. In this section the residue approach is com-

pared and contrasted to previous work in deductive synthesis.

2.7.1 The Single-Term Approach

In 1963 John McCarthy [661 proposed the situational calculus, that is, the representation

of actions as a mapping from a state to a state, or a situation to a situation in McCarthy's

terminology. Within the next two years a system by W. S. Cooper [18] and James Slagle's

DEDUCOM [84] weie published, these being first attempts at answering database queries

via a proof that the answer exists. The year 1969 saw a synthesis of these approaches in

Cordell Green's QA3 [32,31] and Waldinger and Lee's PROW [99,98].

Both QA3 and PROW derived designs by representing the design as a term about

which the design specification can be proven to hold. Their approach is called the single-

term approach here, and most previous work in deductive synthesis falls into this category.

In the single-term approach, the proof procedure binds the term to an expression from

which the design can be ascertained. This expression might be a constant (that is, a known

situation in which the design specification holds) or more likely, a function (that is, is a

composition of situation to situation transformations by which the desired situation can be

reached). Consider the following example:

Example 2.9 To find out how to get block A on top of block B, the system

proposes the goal formula

3d ON(A,B,d)

and proves that this formula follows from the axioms describing the world. The

situation d for which ON(A, B, d) will be bound to a description of a plan to

achieve such a goal. Let us assume that block A is clear and that block C is

on top of block B in the initial situation So. Then, one situation d for which

ON(A, B, d) holds is

d = PUTON(A, B, PUTON(C,Table, So)),

where the PUTON action is described by:

Va,b,s CLEAR(a,s) A CLEAR(b, s) D ON(a,b, PUTON(a,b,s)).

42 CHAPTER 2. RESIDUE

We can find the design from the binding of d, that is, one puts A on B in the

situation attained by putting C on the Table in So.13

In the single-term approach the problem is two-fold: (1) proving that the goal formula

follows from the axioms describing the world, and (2) constructing the "answer," i.e., ex-

tracting the binding of the situation d for which the goal formula holds. Just as for the

residue approach, any number of different proof procedures might be used. A number of

different methods have been developed for answer extraction. Green [32] originally proposed

the idea of an answer literal (See Section 2.6), an idea that was generalized by Luckham

and Nilsson [54] in 1.971 and by Manna and Waldinger [58] in 1980.14

2.7.2 Problems of Expression

As outlined in the above section, the single-term approach represents designs as a single

term. that iFs. a composition of transformations of one situation to another. For problems

in whic; backtracking through a space of state transformations provides adequate perfor-

mance, the single-term approach works quite well. For other problems, the need to specify

the design as a set of state transformations causes difficulty; a finer-grained set of constraints

is desirable for specification of a design. Residues, that is, sets of atomic formulas, provide

a richer language of constraints. Let us look at some of the difficulties encountered in the

single-term approach and how they are handled in the residue approach.

Implicit Linear Ordering A term, being a composition of functions, implies a single

linear order of application of the transformations. This ordering has been used in various

domains to specify the ordering of components in the design. For example, in planning,

the iitieIiiiot functio spt)ccifies the first action taken, the next innermost function specifies

the next action, and so on. Similarly, in program synthesis, the composition of functions

.pecifie. application of functions in a functional programming language such as LISP1. In

circuit design, each function represents the output of a circuit component (such as a resistor)

whose arguments are in turn functions specifying the inputs to that component.

13 This example is a rough approximation of Green's &.ethodology; Green actually developed and used
answer literals (Section 2.6) to provide indefinite (disjunctive) answers in situations where an answer provably

exists, but it is impossible to say what the answer is. Even so, each potential answer is represented as a
single term.

1401 the surfice, Manna and Waldinger's approach does not seem to extract the answer as the binding
of a term, but their "Output Column" can be viewed as a means to more freely rewrite the design term. In
addition, anthors such as \Vos et al [106] represent designs via a fixed number of terms, but this does not.

change the fundamental 1Iatmire of the discussion to follow. Th," issue is not one or many terms, but the use
of terms rather than formulas.

*..........

2.7. DISCUSSION 43

If one chooses to build a specification in strictly backwards or strictly forward order, the
above approach presents no problem. Each intermediate specification can be specified by a
composition of functions. On the other hand, one cannot easily insert components into the

middle of such a sequence. An intermediate design suc! as

PUTON (A, B, PUTON(B, C, s))

does not leave room for specification anywhere except at the innermost position.

Furthermore, because first-order logic does not allow quantification over functions, one
cannot "leave an empty space" in the sequence of compositions. The expression

PUTON(A, B, f(a,. .. , a,, PUTON(B, C, s)))

is not a term of first-order logic. (In addition, one has no idea of how many arguments the

function f will have.)

Residues, on the other hand, specify constraints in no particular order. The presence
(or lack thereof) of a particular component can be expressed independently of its temporal

or physical location in the design. As a result, there is no difficulty in specifying partial
orderings, or in inserting a component between two others.

Example 2.10 By assuming the formulas

Execution(Puton(A, B), Ti) and Execution(Puton(B, C), T2)

a residue procedure can easily state that actions Puton(A,B) and a Puton(B,C)

are in a plan without stating in what order they will be executed. On the other
hand, the single-term approach has no obvious way to do the same; it must

decide in what order the actions are to take place via, the design term

Puton(B,CPuton(A,B,So))

or else the term

Puton(A,B,Puton(B,C,So)).

Specification of Components via Functions The single-term approach relies upon

a set of state transformation functions to specify a design. As mentioned in the previous
paragraph, first-order logic does not permit quantification over functions, so the expression

PUTON(A., B, f(al,. .. , a,,, PUTON(B, C, s)))

44 CHAPTER 2. RESIDUE

is not a term of first-order logic. Once a state transformation function has been added to a

term, it cannot be changed - there is no way to leave the state transformation a, variable

about which other constraints are specified.

Expressed as a residue, design components are terms rather than functions. For example,

the formula

Execution(a, t)

might specify that action a is to be executed at time t. One can certainly quantify over the

set of actions a (and t, too) and specify additional constraints upon a such as

--Moves- Blocks(a).

Combining Constraints Residues specify designs via an implied conjunction of the set

of formulas in the residue. Single terms, on the other hand, cannot depend upon the

semantics of logical conjunction.

Example 2.11 Consider the problem of stating that action A should take place

more than 3 but less than 8 seconds after action B. A residue procedure can

state

Execute(A, T1)

Execute(B, T2)

T, + 8 > T2

T, + 3 < T21

In order to do the same with a state transformation, one might invent a net% func-

tion such as Delay(t 1 , t2, s) that maps a state into an identical state somewhere

between t, and t 2 seconds later than the original. The above plan fragment

could then be expressed as B(Delay(3,8,A(So))).

Suppose one then decides that action B must also be more than 4 seconds after

action A. In the residue approach, one simply adds another constraint to the -

design, namely ti +4 < t2 . In the single-term approach, even though the function

Delay has already been invented there is still a problem. Simply composing this

additional constraint to give

Delay(4,8,B(Delay(3,8,A(So))))

I

1W 1 1111 951 111111 a

2.7. DISCUSSION 45

is not the correct state transformation. Instead, the system must somehow

unpack the original composed function

B(Delay(3,8,A(So)))

and know how to transform it to the desired term

B(Delay(4,8,A(So))).

One might imagine such a program for taking a term (containing some fixed vocabulary)

and an additional constraint and from these two elements outputting a new term incorpo-

rating that constraint, but to do so is ad hoc, at best. In fact, in order to make the above

transformation, the system probably would have to unpack the term to something closely

resembling a set of formulas.

In contrast, by expressing constraints on a design as a set of formulas, there is no need for

rewriting the entire design every time that a new constraint is added. Instead of a problem

to be solved in an ad hoc and probably awkward way, there is a simple way to add an

additional design constraint, namely set union, and there already exists a well understood

semantics for the language in which the design is expressed.

The same sort of problems arise in trying to express a partial ordering of actions, con-

straints on the values of components (restriction on the voltage drop across a given resistor,

or restrictions on the allowed color or shape of a block, for example). Such constraints fit

poorly into the single-term approach because they are not state transformations; they are

facts about the design being constructed.

2.7.3 Reasoning about Partial Designs

Much of the rest of the thesis will concern itself with reasoning about a partially completed

design during the design process. Residue procedures depend upon their ability to do

consistency checking. Chapters 3 and 4 will require additional reasoning about a design.

Terms of a logic are indivisible objects; one can state facts about. a whole termn, but,
not about a part of a term. Thus, in order to reason about a design expressed as a single
term, the composed functions expressing the design must be Iinpackeld into a set of' facts

about which we can reason. In the residue approach this is obviously already the case -

all information about the design are already expressed a~s a set, of formulas; there is no need

to tra,,qform the design into a. form on which a system can reason.

46 CHAPTER 2. RESIDUE

2.7.4 Minimal Answers

It is not always the case that a completely specified design is needed. If order of two actions

in a plan is immaterial, it is good to know this fact. By keeping options open, one allows

choices to be made later when more information might be known, and one allows for more

possibilities for implementing the assumables that are already specified. In the planning

problem of Example 2.10, for example, if the order of the execution of the actions really

did not matter, a parallel implementation would be possible. As a residue would not need

to specify the ordering of the actions, the possibility of parallel execution would fall out of

the residue approach.' 5 As long as the parts of the design needed to prove sufficiency can

be expressed as atomic formulas, there is no need for a residue to specify more.

2.7.5 Mimicking the Single-Term Approach with Residues

Ii it is desired to a residue procedure in a manner similar to the single-term approach, •

it is easy to do so. Suppose that instances of the relation EXECUTION are assumable.

EXECUTION(a, si, sj) means that action a will be executed in situation si transforming the

world to sitation sf. Writing axioms about state transformation operators in the form

Prereqs(a, si) A Execution(a, si, Sf) D Postreqs(a, sf)

one gets the desired behavior.

Example 2.12 In Section 2.7.1 the following axiom was given for the PUTON

using a single-term approach:

Va.b,, CLEAR(a.s) A CLEAR(b.s) : ON(ab,PUTON(a,b,s)).

To get the same behavior for a residue procedure, the above axiom would be
written in the form:

Va,b,s 1,s 2 CLEAR(a,s 1) A

CLEAR(b, sj) A

EXECUTION(PUTON(ra, b), sj) A

PRECEDES(.s,.,s2) D ON(a,b, s2).

"In this particular example, of comse, the order of the c.xecntion really does matter. .
1 .01j~t A KA -It

2.7. DISCUSSION 47

2.7.6 Consistency Checking

Consistency checking is an integral part of the residue approach, but not the single-term

approach. Why the difference?

At first glance, the answer seems to be that residues add something to the world

model W, whereas single terms do not. In other words, the single-term approach is trying

to prove that

W [= d G(d),

where G is the design specification, whereas a the residue approach tries to add facts D

to W such that
WuD k G. (7)

However, one need only rewrite (7) as

W = (DDG),

where D A Di for all Di E D, to see that there must be some other difference. After all,

the term d might specify an impossible design just as easily as the formulas D.

The real reason for the difference is the set of search paths considered by single-term

approaches. As discussed in Section 2.7.2, single-term approaches can build up a design in

one direction only. Due to the limitations of expression of a term, one cannot build up a

design from the middle outward, but must either build up the design from the outputs to

the inputs (as iz, commonly done) or perhaps from the inputs to the outputs. 16

Let us assume that one is working backwards from the goal.' 7 The original goal is

completely regressed through each state transformation to give new goals' 8 . Thus, at any

time, the state transformations coming after (after in the design itself, not in the design

process) have already been entirely specified (modulo variable bindings of arguments to the

state tranformation operators) - it is impossible to choose which aspects of the design

to consider in detail first. The importance of making design decisions in an acceptable

order has been recognized since the beginning of Al. For example, one of the main ideas

of GPS [71,23] was the notion of solving the goal spanning the "greatest difference" first.

One may not do so under the restrictions of the single-term approach.

A ln order to be able to design in other orders, one might consider a hierarchical approach as in Sacer-
doti's ABSTRIPS [801. Given such an approach, one can postpone decisions about the details of parts of the

design. Unfortunately, just like residue methods, a hierarchical approach requires checking that the parts
mesh aq planned, i.e., consistency checking. It was a known limitation of ABSTRIPS that no such checking
was done.

17The forward case is similar, and to the best, of the author's knowledge, no such single-term system has
been proposed.

'"See Waldinger [97] or Nilsson [72] for an explanation of goal regression.

R 1.

11p.. 1 i MII

48 CHAPTER 2. RESIDUE

Example 2.13 If one has a goal of flying from New York to San Francisco,
then taking a trip by ship to Hong Kong, and driving to a hotel in Hong Kong,
it is hardly appropriate to plan the drive to the hotel, and then plan the boat

trip, and finally plan the plane trip. One would almost certainly want to plan
the cruise first, followed by the plane trip, followed by the drive. Instead, a
unidirectional search through a set of state transformations forces one to plan
the drive, then the cruise, and then the flight.

Single-term approaches generally assume that every composition of the allowed state
transformation operators is a meaningful design. Because such terms are all that can be
created, both during the design process and as the output of the design process, there is
no need to check consistency. What is lost is the ability to consider state differences in any
order, to specify partial orderings on operators, to insert application of operators between

existing operators, or to partially specify operators 19.
If the above capabilities are not important, the world model for a residue system can be

set up to mimic the approach of the single-term approach (as explained in Section 2.7.5),
that is, one may perform a strictly backwards search just as in the single-term approach.
Otherwise, one faces the need to design via successive refinements that may or may not be

consistent.

2.8 Related Work

2.8.1 Reiter's Default Logic

Ray Reiter [74] develops what he calls a "Logic for Default Reasoning". His goal is to
develop a logic for drawing plausible conclusions that are u5111rovbi, b ct .onsi't eni with

the initial world model. For example, if Fred is known to be a bird, Reiter's system will

conclude that Fred can fly unless it can prove otherwise. Such a conclusion is made by using
a default, which Reiter expresses as:

ia(X) : M31(x),'",Mflm(x) (8)
= w(x)(8

The default 6i is interpreted as, "If a(x) is true and if ,31(x), .. /3,(x) can be consis-

tently believed, then w(x) may be believed.

19Such systems have also not generally dealt with specifications on the form of the design such as "No
loops allowed" or "No more than four NAND-gates allowed." To handle such specifications, a single-term
system would be forced to use some sort of ad hoc procedure to see if the design terni meets this specification.

MODOMMI)GMW

2.8. RELATED WORK 49

In the example above, the default was simply:

bird(x) : M flies(x)
flies(x) ' (9)

Reiter defines a default theory A = (D, W) to be a set of defaults D and a world model
W. A default theory may have extensions E, that is, smallest sets of well-formed formulas
such that:

1. WCE,

2. E is deductively closed, and

3. All defaults that may be added to E are in fact included in E.

In order to decide whether a formula p can be believed, Reiter asks, "Given p and

A = (D, W), does there exists an extension E such that p E E?" Unfortunately the
problem is in general intractable. There is a subclass of the class of general defa.2' (that
is, defaults expressed by (8)) such that there is a proof theory for the above question. This
subclass is called the class of normal defaults and consists of defaults of the form:

6i = (x) : Mw(x)
w(x) (10)

Note that 9 is a normal default. For normal default theories, i.e., default theories such
that all 6i E D are normal defaults, Reiter proves the following results:

1. All normal default t !7or-" hi" , extensions.

2. For a formula p and a normal default theory A, there exists an extension E of A such

that p E E if and only if there exists a tolI down default proof of p with respect to A.
0

Top down default proofs are Reiter's proof procedure for finding a subset D,, C D such
that for all formulas p, p £ E * W U Consequents(Dn) F- p, where the Consequents of a

default theory D is the set consisting of the w(x) for each default bi c D.

Relation of Residue and Default Logic Both the residae al)proach and Default Logic

begin with a world model 1W. In addition, there is a. language of assumables A for residues

corresponding exactly to Reiter's defaults D. In fact, each assumable call be expressed as:

:MwV(x)
7V- (x) (l

50 CHAPTER 2. RESIDUE

The meaning of (11) is that w(x) may be assumed if it is consistent to do so. It is seen

from (10) and (11) that assumables are a proper subclass of the set of normal defaults,

namely the class where the prerequisite oz(x) is always true.

The fact that c(x) = True for all assumables means that Top Down Default Proofs re-
duce to a residue procedure. For this case, one need not construct a sequence of derivation
trees, but only perform a single derivation, just as in a residue procedure. There is a small
difference in that Reiter's proofs assume a control strategy called Linear Resolution (see

Ioveland [51] or Luchkam [53]) rather than set of support resolution. Linear Resolution
seemingly was used only for the sake of simplicity. For set of support resolution, Reiter's

proofs go through virtually unchanged. Although Linear Resolution is complete, the disad-
vantage of being forced to use Linear Resolution is that it can force the space to be searched

in an inappropriate direction. For example, linear resolution can sometimes force forward
chaining, which often is far branchier than backward chaining.

Whereas a residue consists of a set of assumables found necessary by the proof, Reiter
defines default support as the set of defaults invoked in a given top down default proof.

These are in exact correspondence.

The correspondence of designs to extensions is a bit trickier. If two different designs are
inconsistent, then they cannot both belong to the same extension. On the other hand, there
will in general be numerous extensions of which a given design is a member. A design only

specifies part of the world; what happens outside of the design is irrelevant to the design,

but changes the extension. For example, a plan might specify all the actions in the world
from time t = 0 until t = 10, but says nothing about events after t = 10. Every inconsistent

course of events after t = 10 will be in a separate extension.

Although residues are somewhat simpler than Reiter's proof theory, the approach unfor-
tunately suffers from the same computational complexity as Reiter's work. Both are based
on decision methods for first-order logic and thus are at best semi-decidable. However,

neither is even semi-decidable because both depend upon proving satisfiability of the world
model W unioned with the set D., of assumptions made. As a result, both Default Logic
(as Reiter points out) and residue procedures must rely on heuristic methods to become

convinced of satisfiability.

2.8.2 Truth Maintenance

A major weaknesses of the residue procedures presented so far is that there is 1.o way to learn
from previous mistakes. The non-deterministic search procedure presented in Section 2.3

12 1 1 1 I 1

2.8. RELATED WORK 51

is neutral on the subject of caching results of previous deductions.2 0 It does not specify a

procedure for avoiding the pitfalls of blind search or of chronological backtracking, but does

not tell us we cannot add such a procedure.
In his work on assumption-based truth maintenance systems (ATMS) [21,20,19] Johan

de Kleer has listed a number of known problems with chronological backtracking. Let us

review them here as they relate to Residue.
In Futile Backtracking, one finds a contradiction and backs up to a point that could al-

ready be eliminated as contradictory based on previously found contradictions. For example,
if {x = 1, y = 1} is a contradictory set, then backing up from a point {x = 1, y = 1, z = 0}
to another point {x = 1, y = 1, z = 1} is futile. In a residue procedure, if some set G (con-
sisting of assumables and remaining goals) causes a contradiction, i.e., W U G k false,

then it can pay to note this "nogood" set (Steele [91]). Future set of assumables that either
contain or entail the set G can be immediately eliminated.

Closely related is rediscovering contradictions. In futile backtracking we did not undo 6
one of the choices in the newly discovered nogood set. In addition, we might find an old
contradiction via a different path. As above, the caching of nogood sets will solve this
problem.

Rediscovering inferences is a different problem. The fact that a deduction was performed
on a different search path does not make it inapplicable on the present path. As long as the
deduction was not based on a contradictory set of assumptions, then the deduction itself
is valid whether of not the search path on which it was made was a dead end or not. In
residue procedures, this is particularly important while checking consistency. There is no
reason not to cache facts derived from W and various assumables in a global database to
be used by all search paths (the subject of Chapters 3 and 4).

Incorrect ordering is de Kleer's name for finding contradictions at the right time. Of
course, there is no general solution for this problem. In residue procedures, the problem

expresses itself as the resource trade-off between goal reduction and consistency checking.

As de Kleer points out, a Truth Maintenance System (Doyle [22]) solves the first three
problems. Since Doyle's TMS, there have been various other versions of TMS's, in particular
McAllester [64,62,631, Martins [61], McDermott [67], and de Kleer [21,201. Common to each
of these systems is storing of the justications and assumptions upon which a deduction is
based. However, they differ in the choice of information maintained. Doyle's "justification-
based" TMS stores justification pointers to its immediate predessors and successors, but
does not propagate new sets of support for each node at each step of the way. On the

2

52 CHAPTER 2. RESIDUE

other hand, de Kleer's "assumption-based" TMS (the ATMS) maintains a complete list of
"environments", that is, assumption sets upon which each deduction might be based. 2 As
a result, one can quickly see whether a node is a member of a given context (the deductive

closure of W U G for some set of assumptions G. However, insertion of a new fact into such a
database is expensive, as its effects on the various environments must propagate throughout
the system. The justification-based TMS, on the other hand, maintains a single consistent

context at all times. As long as contradictions are not found, insertion of new facts is quite
inexpensive. However, when contradictions are found, the TMS may need to do a good deal
of search in order to find a new consistent context.

2.8.3 Douglas Smith

In [87] Douglas Smith used a natural deduction system for program synthesis, using a
modified single-term approach in extracting the answer from the proof tree. Rather than

prove that the generated program was true for all preconditions, Smith attempted to reduce
his goal to a set of preconditions that fit into one of a number of existing skeletons. The
skeletons were not assumable, but rather were attached to procedures for modifying both
the remaining preconditions and for extracting the program from the existing derivation.

See [88,89].

2.8.4 PROLOG/EX1

In PROLOG/Exl [101,100], Adrian Walker modified Prolog such that in case of failure to

produce an answer, the system returns an explanation of what additional facts would be
needed to produce an answer. The elements of such an explanation of failure are analogous

to assumables in residue procedures. As such, Walker faced the problem of deciding what

sufficient set facts are most reasonable to assume to explain the failure. Not just any set of
facts will do - the query itself obviously suffices for producing a proof of the query, but is
hardly an acceptable explanation of why the proof failed. Walker's approach was to use a

set of three domain-independent rules for deciding what proof steps to assume based upon
depth in the proof tree and upon constants in the query.

2.8.5 Theorist

At the University of Waterloo, David Poole, Randy Goebel and associates have recently
developed a system called Theorist [29,73] for theory formation problems. As Poole et al

21Possible only because de Kleer deals only with propositional calculus.

2.9. CONCLUSION 53

have pointed out, Theorist's theories are similar to residues, and they also have pointed out

the similarity with Reiter's Default Theories [74]. There is also a good deal of similarity

between assumability and that of appropriateness of an explanation for diagnosis and/or
theory formation problems. Just as the constitution of a legal design is rather arbitrary,

the same holds true for an explanation of a problem. At some level, either the system or

the system designer must legislate what consititutes a sufficient explanation that need not

be further explained, just as we legislate what design assumptions can be made without

further explanation. Luckily, for design, the problem of deciding what are the primitive

components of a design seems much easier than deciding what constitutes a prinitively
acceptable explanation. See Charniak and McDermott [16] and especially McDermott [68]

for pessimistic views on finding such criteria for explanation.

2.9 Conclusion

This chapter presents the residue approach to design synthesis and two procedures for

finding residues. By using a set of atomic formulas to express designs rather than using

a single term, one gains two important advantages: (1) Residues can easily express much

finer-grained decisions than systems based upon a single term, and (2) Parts of designs can

be specified in any order rather than strictly from the goal backwards or from the initial

state forward. In addition, the representation of partially complete designs as sets of facts

enables an inference system using predicate calculus notation to reason directly about the

design. For a given system if the full generality of the residue appraoch is not needed,

the database can be written in such a way that the residue approach reduces to a system

isomorphic to the single-term approach.
Residue procedures have been used in a number of projects at Stanford - DART [28]

used residues to generate diagnostic tests for combinatoric circuits and in his PhD the-
sis, Narinder Singh [83] used a residue procedure for generating diagnostic tests for IBM

Printer Adapter cards. Residues were also used in Russ Greiner's analogy understanding

program [34] and in Jock Mackinlay's APT [55,56] tool for automatic graphical presenta-

tion.

The generality of the residue approach contains the seeds of a potential combinatoric

explosion. In particular, in the most general case residue l)rocedures require a consistencycheck, which is a non-semidecidable p~roblem. Usually, however, careful crafting of the

knowledge base prevents consistency checking from being prohibitively expensive.

Chapters 3 and 4 show how the full generality of the residue approach can sometimes

be exploited to bring about large reductions in the search space.

Chapter 3

Supersumption

3.1 Ramifications of a Goal

It is well-nigh impossible to drive a car without consuming fuel. Similarly, writing a new

version of a disk file will change numerous parameters associated with that file such as write-

date, disk address, and size. In both cases, the latter condition inevitably accompanies the

former; the latter is a ramification of the former.

Making the assumption that the world's behavior (or at least the relevant portion of it)

can be modelled by a set of first-order axioms W, ramifications, such as the above, can be

captured by logical implication. In other words, if W is to capture fuel consumption as a

ramification of driving, a formula denoting consumption of fuel must be a logical implication

of any formula denoting driving of a car.

A goal G is a partial description of a state. If some formula N1 is logically implied

by W U G, then in every state S described by G, whatever is denoted by N also holds; N is

t raitificationi of G's being true. The process of finding ramifications of a goal can be seen

as (1) looking at a partial description of a hypothetical state S in which G is holds and

(2) trying to fill in more of the description of S based upon our knowledge of consistent or
"allowed" states of the world (where this knowledge is captured in W).

Obviously, it may take an arbitrary amount of inference to find a particular ramification

N. Some facts follow immediately from G while others may require a complicated line of

reasoning to discover. Of course, the "distance" between a goal G and ramification N is a

function of the database and of the inference engine at hand. Having a large file in one's

directory almost immediately leads one to realize that it will be expensive to keep the file.

On the other hand, it may take a good deal more inference to see that the presence of that

'The symbol N is being used for a ramification instead of R to avoid mistaking the symbol for a residue.

54

!

3.2. USING RAMIFICATIONS OF A GOAL 55

file precludes receiving any additional electronic mail.'

3.2 Using Ramifications of a Goal

There are a number of ways in which to use the known ramifications of a given goal's being
true. First and foremost is elimination of an inconsistent goal - if a ramification of a goal's

being true is known to be impossible, then the goal itself is not achievable. Reduction of
problems to the Halting Problem is a good example of this. Given some goal G, if we show 0

that achieving G implies that we can solve the Halting Problem, then G is impossible to
achieve. A more mundane example would be to try to find a disk file that is larger than 1

MByte. If it is known that all files are stored on 256 KByte floppies, it can immediately be
said that there can be no such file. On the other hand, if the ramifications of the goal being
true are ignored, all the files in the system will probably be enumerated, checking the size

of each to see if it is larger than 1 MByte. Of course, no such file will be found.

Another use of ramifications is restriction of the search space via additional constraints.

Suppose again that a file that is larger than 1 MByte is sought. This time, however, there

is a 50 MByte hard disk and hundreds of 256K floppy disks. From the above information, it

can be derived that a file larger than 1 MByte must reside on the hard disk. Thus, files that

reside on the floppies need not be considered, and a good deal of search has been avoided.

Elimination of an inconsistent goal is a special case of restriction via additional constraints,

that is, the case in which the entire search space is eliminated from consideration rather

than just part of it.

A third use of ramifications is in enabling additional heuristics to be used. It may be
the case that whatever heuristics used are not directly applicable to the goal at hand, but

are directly applicable to some ramification of the goal. Without filling out more of the

description of the gfoal state, the use of potentially applicable heuristics may be missed.

Suppose we are looking for an executable file for playing chess. Any solutions for the goal

will also fall into the category of being executable files for playing a game. If it is known

that most executable game files are located on directory /usr/games, then we would be well-

advised to look here first for such a file. Note that without realizing that chess is a game
(that is, finding a ramification of the goal), we would not have known that the heuristic

information applies (that is, that most executable game files reside on /usr/games).

2This situation often arises in operating systems such as TOPS-20 that impose a hard limit on the amount
of disk space a user is allowed to have.

Al

- ~ - A

56 CHAPTER 3. SUPERSUMPTION

3.3 Subgoals, Design Decisions and Ramifications

The discussion so far has been about ramifications of a given goal being true. The discussion

applies, however, not just to the top level goal of any problem, but to any subgoal3 generated
in trying to solve the problem.

Example 3.1 Consider the goal G of being in Denver, starting from a state of
being in San Francisco. One way to achieve G is via a commercial airline flight

from San Francisco to Denver, that is, a subgoal S to take a flight from San

Francisco to Denver. If the cheapest such flight costs $150, then a ramification

N of S being true is that at least $150 will be spent. On the other hand, N is

not a ramification of G being true; there might well be a way to get from San

Francisco to Denver for less money, say $100.

The above example shows that ramifications of achieving a subgoal are not necessarily

ramifications of achieving the original goal. Achievement of a. subgoal may have additional

ramifications because the subgoal may be more restrictive than the original goal - there is

additional information from which to reason. In Example 3.1, in reducing G to S there was

a desigr decision made, namely, to take a commercial flight. Since S's ramification 4 that

the trip will cost at least $150 was based upon this design decision, the ramification will

not necessarily hold for the original goal G.

The process of goal reduction can be viewed as a. process of making design decisions

restricting the class of solutions to consider. Although most of the previous examples

have been about ramifications of a top-level goal, anything that can be said about using

ramifications of a top-level goal can also be said about using ramifications of a subgoal.
All ramifications of a subgoal will not necessarily hold for the top-level goal., but since the

3 There is potential confusion in that the logic programming community uses subgoal to refer to a conjunct

of a goal (which is a conjunction of litcrals). Here, subgoal is used to mean an entire goal (usually a
conjunction) to which another entire goal has been reduced.

4 The word "ramification" usually refers .to one thing being true as part and parcel of another's being
true. One might speak of the "ramifications of a fact being true," Le, "ramifications of aichieving a goal,"

and one might also speak of the "ramifications of having a given goal." In the interest of brevity let us make
the convention that "ramification of a goal G" refers to a ramification of achieving the goal G, rather than a
ramification of having the goal G. Such usage is consistent with viewing a goal G as a partial description of a
desired state. It is also natural to speak of "ramifications of a design decision," and again, what is meant is
a ramification of implementing the design decision rather than a ramification of making the design decision.
Since both goals and design decisions are represented as formulas (See Chapter 2), there is no formal need to
distinguish between ramifications of goals and ramifications of design decisions - it is only .:,;)ortant that
it be understood that ramifications of a goal or design decisions refer to achieving a goal and •ph'nm ntiny

the design decisions.

3.4. FORMAL DEFINITION OF RAMIFICATIONS 57

subgoal is a sufficient condition for the top-level goal, any ramification of the top-level goal

will be a ramification of any of its subgoals. Later it will be shown (Section 4.7) that there

are cases in which a subgoal ;s derived from more than one higher-level goal and that a

higher-level goal may have ramifications that are not ramifications of the subgoal.

3.4 Formal Definition of Ramifications

The previous sections have discussed in broad terms how ramifications of a goal being

true can be useful in pruning the search space of a problem. Let us now give a precise

formulation of a ramification a goal's being true. Although it is tempting to simply say

that a ramification is any formula N for which W k (G D N), the existence of variables

requires a more careful definition.

Definition 3.1 (Ramification) Let W be a satisfiable set of closed formulas, and let G be S

a closed formula in prenex normal-form, that is, G = D 1xI ... 0,,xmG, where C, is either 3

or V, and G is a quanitifier-free formula whose only free variables are x 1 ,. . . , xg. Suppose N

is a formula whose only free variables are yl,..., yn such that {yl , yn} _ {X,..., X1}.

We say that N is a ramification of G given W (or Ramification(W, G, N)) if

W = VX, ... X9(G D) N). (12)

In addition, we say that N is a strong ramification of G given W (or StrongRam(W, G, N))

if Ramification(W, G, N) and W K Vyl ... Vy, N..

Note that for every formula N containing free variables Z1 , Zq not in G there is

obviously a corresponding formula N' = Vz1 ... zqN. As a result, the restriction that N's

free variables be a subset of G's free variables causes no loss of generality.5

Example 3.2 Consider a goal G = 3x 3 y A(x)AB(x,y)AC(y) and W containing

a formula

VuVvVw (A(u) A C(v)) D D(u, ,, w).

Then the open formula VwD(x. y, w) is a ramification of G given W.

'In Chapter 4, where ramifications will he viewcd as clauses, it. will be necessarv that Unlquantified v ari-
ables appear ii rnmifications that do not appear in the goal form la. This is only an Irlifact. of representation
via clauses; thc variables are implicitly inivcr.ally quantiiicd.

IN:

58 CHAPTER 3. SUPERSUMPTION

Example 3.3 Consider the goal

G = 3xFlies(x) A Hairy(x) A Loves(x, Bertha). (13)

Suppose the database W contains the formula

V y [Flies(y) A Hairy(y) D Bat(y)]. (14)

Since follows from (14) that

W = V x [Flies(x) A Hairy(x) A Loves(x, Bertha) D Bat(x)], (15)

Bat(x) is a ramification of G given W.

The literal Loves(x, Bertha) is not needed to show that Bat(x) is a ramification

of G and has no effect on whether Bat(x) is a ramification of G. Similarly we

might be able to derive other ramifications dependent upon Loves(x, Bertha),

but with no dependence upon Hairy(x).

In the previous examples the ramification was provable via application a single appli-

cation of modus ponens using a proposition from W. This restriction need not hold, as in

the following example:

Example 3.4 Consider a goal formula

G = Travel(Palo Alto, Denver) A Duration(Paio Alto, Denver) 4, (16)

that is, the task at hand is to plan a trip from Palo Alto to Denver that takes

4 hours or less. Suppose W contains axioms (17) - (20):

Vx,y,d,t Travel(x,y)

A Dist(x,y) : d (17)

A Duration(x,y) _< t
D AvgSpeed(x,y) > d,

that is, the average speed required for a trip is greater than or equal to the

distance covered divided by the maximum time allowed for the trip,

Vx,y,s 1 ,.s2 , m AvgSpeed(x,y) s,

A MaxSpeed(m) S2 (18)

A .sl > s2

D Mode(x,y) $ m,

milli

3.4. FORMAL DEFINITION OF RAMIFICATIONS 59

that is, if the average speed required in getting from x to y is greater than the

maximum speed for a given mode of travel, then that mode of travel will not be

used for the this portion of the trip.

Dist(Palo Alto, Denver) = 1000, (19)

that is, the distance between Palo Alto and Denver is 1000 miles, and

MaxSpeed(Auto) = 70, (20)

that is, the maximum speed for an automobile trip is 70 miles per hour.

Consider the formula N = AvgSpeed(Palo Alto, Denver) = 250. Since W k (G D N),

that is,

W 1= [Travel(Palo Alto, Denver) A Duration(Palo Alto, Denver) _ 4]

D AvgSpeed(Palo Alto, Denver) = 250,

N is a ramification of G. Similarly,

Mode(Palo Alto, Denver) - Auto (21)

is also a ramification of G.

Ramifications in the Residue Approach Chapter 2 discussed design as a problem of

finding a residue, that is, a problem of reducing a goal G to a subgoal D1 A ... A Dd such

that for D = {D1,.. .,Dd}

0
1.WUD Iz- G
2. Each Di is assumable.

3. W U D is satisfiable.

Goals and designs are (listillguished only by the property of assumability (See Section 2.2.3).

\ legal design is a geonll thiat happens to ho assumable. Because residue i)roce(lures express

design decisions as part of a goal, there is no need to distinguish between ramifications of

a goal being achieved and ramifications of making a design decision - both can be derived

from W and from a given goal (or subgoal) generated by the residue procedure. 0

R
is= C

60 CHAPTER 3. SUPERSUMPTION

3.5 Supersumption

The key idea of this chapter is supersumption,6 the reformulation of a goal by appending of

additional constraints. In this thesis, all such added constraint will be ramifications, but it

is reasonable to consider adding other constraints to a goal, for example, constraints that

probably follow from the goal.

Definition 3.2 (Supersumption) Given closed well-formed formulas G = Oxl..., DxgG

and G', where G is quantifier-free, G' supersumes G (or "C' is a supersumption of G ") if

G' =_ OX, ... 0 xg(A A),

where A's only free variables are {yl,..., ya} and {Yi,..., Ya} C {,..., xg}.

Definition 3.2 only requires logical equivalence between Ox, ... Oxg(G A A) and G'. It

does not require that G' actually be the formula G A A. In particular, if G and A arc

conjunctions, this definition says nothing about the ordering of the conjuncts in G'.
If A is a ramification of G, then the same set of bindings for x cause G and G' to be

entailed by W.

Theorem 3.1 For a goal G = Ox1 ... , OxG, world model W and Ramification(W, G, N),

every model of W and G is a model of G A N.

Proof: Because N is a ramification of G, we know that

W H Vx 1 ... Vx(G A N). (22)

Let M be an arbitrary model of W and G. By the deduction theorem and (22),

rl must also be a model for N, and therefore for G A N. Thus,

W Ox O ... Oxg(A N).

note that Theorem 3.1 did not preclude W containing a set D of formula such that

W' U D F G, where W' = W - D. In other words, we have the following corollary:

6 The motivation for the term supersumption is that it is in some sense opposite to subsumption in which a

disjunction C (the denial of a goal) is matched with a known formula consisting of a subset of C's disjuncts.
Supersumption, on the other hand, adds conjuncts to a goal; it creat's a goal G' the denial of which is

subsumed by the denial of the original goal G. If one considers supersuniptions of non-conjunctive goals

then the analogy breaks down.

3.6. SPEEDUP VIA SUPERSUMPTION 61

Corollary 3.2 If D is a residue of G = ox l . .. OxG given world model W, and if

Ramification(W, G, N), then D is also a residue of of Oxi ... Oxg(A N).

Example 3.5 Consider the goal of trying to find an executable file named chess

on some computer system:

G = 3xFile(x) A Name(x, chess) A Executable(x). (23)

One possible supersumption of G would be formed by adding an additional

constraint A = Directory-of(x, /usr/games) to form a new goal

G'= 3x File(x) A

Name(x, chess) A (24)

Executable(x) A

Directory-of(x, /usr/games).

If A = Directory-of(x, /usr/games) is a ramification of the goal, then the new goal G', created

by adding the conjunct Directory-of(x,/usr/games) to G, has the same set of solutions as G.

3.6 Speedup Via Supersumption

As discussed in Section 3.2, supersumption can reduce a search space by (1) eliminating

inconsistent goals, (2) restricting search space via additional constraints, and (3) allowing

additional heuristics to be used. The first and third of these mechanisms are easily under-

stood. In this section, the second mechanism, restriction of the search space, is discussed

in more detail.

The purpose of supersumption is to reformulate a goal G as a new goal G' that is cheaper

to solve than G. As in all reformulations, there is a saving if

Cost(Reformulation(G)) + Cost(Solving(G')) < Cost(Solving(G)). (25)

In other words, the savings in finding solutions for G' must more that offset the overhead

of reformulating G. For our purposes, "Solving(G)" can refer to linding solttions by either

abduction or ded,,ction, and can refer to problems of finding one solution or fimding all

solutions (assu ming it finite nmber of solutions).

(nfortunately, estimating the cost of solving a. given problem is not a well developed

area. In order to uma ke the problen at all traclal)le, let us make th' follovwig, ii siimp[in pt nS:

-. - '~~u'V

62 CHAPTER 3. SUPERSUMPTION

Reformulation

Find Ramifica- Order Con-
G tion N juncts of G A N

Figure 7: Reformulation of Conjunctive Goals via Supersumption

1. G and G' are ordered conjunctive goals. A conjunctive goal is a closed formula g =

Ox1... Dx9(g A. .. Ag,), where each gi is an atomic formula. Thus 3. VxyA(x)A B(x, y)

is a conjunctive goal, whereas 3xVy(A(x) V B(x, y)) D D(x, y) is not. Just as clauses

in resolution can be seen as being either sets or sequences of literals, so can conjunc-

tions. An ordered conjunctive goal is a sequence of atomic formulas. In an ordered

conjunctive goal it is meaningful to refer to the first (leftmost) conjunct and to speak

of stepping though the conjuncts one at a time from the first to the last (or rightmost)

conjunct.

2. Conjuncts will be solved in order starting at the left, that is, the leftmost conjunct
is solved independent of the remaining conjuncts, and any constraints needed for the

solution to the leftmost conjunct (variable bindings or assumptions made) are imposed
upon the remaining conjuncts, and the process begun anew.

For problems for which the above two assumptions hold, the supersumption process is

illustrated by Figure 7. For such goals G, one first creates a new goal G A N and then orders

the conjuncts, yielding an alternative goal G'.

Chapter 4 deals with finding ramifications for a given conjunctive goal G and world

model W. The subject of ordering conjunctive goals has received attention in both the

database and Al literatures. The approaches that have generally made the following as-

sumptions:

3. All solutions {YY - . .,. ,Yj -)) to W G are sought, where {y, ..., yj) is

a subset the set of the existentially (uantified variables in G and the Yi are ground

3.6. SPEEDUP VIA SUPERSUMPTION 63

instances of the y{. 7

4. For every conjunct R(T 1,...,T,) appearing in either G or in G', R is either evaluable
or extensional, where R is a relation symbol and Ti is a term. An evaluable relation
is such that the truth value of any ground instance of an atomic formula containing
this relation can be ascertained in constant time. Examples of evaluable relations on
integers are less-than, oddp, or positivep. Extensional relations are such that all known
ground instances of each conjunct containing this relation appear directly in W; no
additional ground instances of the conjunct are entailed by W. In short, each conjunct
appearing in G or G' may simply be looked up in W to find all of its known ground
instances.

As stated above, the subject of conjunct ordering has been studied in under most or
all of the above assumptions. Authors such as Blasgen and Eswaren [3], King [44] and
Chakravarthy [131 make Assumptions 1-4 in their work, as is common in the database
literature. David E. Smith [86,85] adds another assumption, that every extensional relation
is indexed on each of its arguments.

This research assumes that there exists the means to order conjuncts reasonably. As-
sumptions I and 2 are made, but Assumptions 3-5 will be explicitly stated if they are being -
assuimed.

3.6.1 Generators and Filters

It will be useful to distinguish two ways that a conjunct can act with respect to a variable, 0
as a generator or as a filter of its values. If the ordered conjunction is to be solved in order,
then for every variable x in every conjunct C, it can be said whether x will be grounded or
not when solutions are to be found for C'. The first (leftmost) appearance of each variable
will not be grounded and the rest grounded. Thus, the first conjunct C in which variable x 0
appears generates values for x; we say that C is a generators or x. For any subsequent
conjuncts D in which x appears there will be solutions for some subset of the values of x

rNote that this assumption disallows indefinite, i.e., disjunctive solutions. See Reiter (75] for a discussion
of indefinite solutions.

Note also that this assumption is not very strong in that the cost of finding one solution can usually be
reasonably approximated as the time of finding all solutions divided by the number of solutions.

'In programming, given a problem (or subproblem) vith many solutions Si, S2,...,- a gCicIr(aor is thf!
nlame commonly given to a procedure that returns one solution each time it is called, and if tI hC , are
exhausted, returns a token saying that it can produce no more solutions. Generators are commonly ii.,
plcuiented via coroutines, Algol own variables, reference to global data structures, or some other form of
memory between calls.

64 CHAPTER 3. SUPERSUMPTION

New Generator:
Directory-of(f, /bin/compilers) Executable

Compiler-File ,

- Executable nl Compiler-File

Figure 8: Speedup Obtained Using Additional Constraint as Generator

generated by C; we say that D is a filter for x. Note that a conjunct can be a generator for

some variables and a filter for others.

Example 3.6 Given the ordered conjunctive goal C(x) A D(x, y) A E(x, y), C(x)

acts as a generator for x, D(x, y) acts as a filter for x and a generator for y, and

E(x, y) acts as a filter for both x and y.

3.6.2 Ramifications as Generators

One of the ways in which a. supersumption G' = G A A can be cheaper to solve than G itself

is for the additional constraint A to act as a generator of values for some val iable x.

Let us consider a very simple case in which the cost of finding all solutions to a conjunct C

is equal to the number of ground instances of C appearing in W. The above assumption

corresponds roughly to a database lookup on a fully indexed extensional relation.

Example 3.7 Consider a database W of information about the files of a com-

puter system. Suppose that all solutions to each of the atomic formula~s Executable(f),

INA

3.6. SPEEDUP VIA SUPERSUMPTION 65

Compiler-File(f), and Directory-of(f, d) can be found with cost equal to the num-

ber of solutions. Here, Executable is a unary relation holding for all executable

files, Compiler-File is a unary relation that holds for all files of source code, bi-

nary code or documentation for compilers of all programming languages, and

Directory-of is a binary relation such that the second argument is the name of

the directory on which the file named by the first argument is found. Only if
d is a ground term is it assumed that the cost of generating all solutions to a

query Directory-of(f, d) is equal to the number of solutions.

Given the above, suppose we have the query

G = 3fExecutable(f) A Compiler-File(f),

that is, a request has been made to list all executable compiler files. Assuming
the number of executable files is less than the number of compiler files, the goal

G is already optimally ordered. G uses Executable(f) as the generator of values

for f and filters this set of values with Compiler-File(f). The cost of finding all

solutions to G would be

Cost(Solving(G)) = Card(Executable(f)) +

Card(Executable(f) n- Compiler- File(f)),

and

Card(Executable(f)) _< Cost(Solving(G)) _< 2 * Card(Executable(f)),

where Card(s) is the cardinality of the set s.

Now, suppose that it is known that all executable compiler files are on directory

/bin/compilers. For example, W might contain a formula

Vy Executable(y) A Compiler-File(y) D Directory-of(y, /bin/compilers).

In such a case, N = Directory-of(f. /bin/compilers) would be a ramification of G,

yielding one possible supersumption

G' = 3fDirectory-of(f,/bin/compilers) A Executable(f) A Compiler-File(f).

The cost of finding all solutions to G' is

Cost(Solving(G')) =

Card(Directory-of(f, /bin/compilers)) +

Card(Directory-of(f, /bin/compilers) f Executable(f)) +

Card(Directory-of(f,/bin/compilers) fn Executable(f) f Compiler-File(f)). S

66 CHAPIER 3. SUPERSUMPTION

Assuming that

Card(Directory-of(x, /bin/compilers)) < Card(Executable(x))

it can be seen that

Cost(Solving(G')) _ Card(Directory-of(f, /bin/compilers)) +

2 * Card(Executable(f))

< Cost(Solving(G)).

The above example is illustrated in Figure 8.

In the above example, it is assumed that the cost of solving a conjunct is equal to
the number of solutions. Such an assumption essentially means that there is no search
for solutions - they are simply enumerated. In situations where more search is involved,

supersumption can be a more powerful tool.

Example 3.8 Consider the goal

G = 3xFilename(x, Chess) A Executable(x),

that is, find the set of all executable files named chess. This time, let us assume

that both Filename(x, Chess) and Executable(x) can be solved with cost propor-

tional to the number of files in the entire computer system, typically O(i05).

Ground instances of both of these conjuncts can be solved with unit cost. The

above cost assumptions arc a reasonable model of most computer systems. A

iist of all files with a given name is not usually directly available on most sys-

tems. To get such a list one must somehow enumerate all the files on the system

and then filter this list to find those with a given name. Thus, assuming that

one knows how to enumerate all the files of the entire system (without further

search for such a procedure), one can find the set of files named Chess in time

proportional to the total number of files.

Given such a goal, a human user would typically either find a short cut based

on other available information, or else resign himself to a large search. Let us

see how supersumption can use such additional information in order to reduce

the search.

I
- - %. *N

3.6. SPEEDUP VIA SUPERSUMPTION 67

Suppose now that it is known that

Game(Chess)

and that

V y Game(y) A Executable(y) D Directory-of(y, /usr/games),

that is, all executable files for games are located on directory /usr/games. In

such a case, N = Directory-of(x, /usr/games) is a ramification of G, and the goal

G' = 3txDirectory-of(x, /usr/games) A Filename(x, Chess) A Executable(x)

is the obvious reordering of 3x(GAN), where G = Filename(x, Chess)AExecutable(x).

In constrast to the other two conjuncts, Directory-of(x, /usr/games) asks for in-

formation that is directly available to a typical system, that is, the solutions to

it can be enumerated with cost proportional to the number of solutions to the
conjunct. Typically, a directory will contain 0(102) files, and thus

Cost(Solving(G')) ; 102 + 1 + 1 102.

A speedup of three orders of magnitude seems quite large, but for such a problem it is not

unrealistic - an unreasonable goal was given to the system. Using available information,

one is able to reformulate such a goal to yield much more reasonable one. If all goals given

to a system were formulated in the optimal fashion, there would be no need for many sorts

of optimizations. Indeed systems would have to be far less robust. But, it is for precisely

such badly stated goals that techniques such as supersumption are needed - to allow a

problem-solving system to handle a wider range of goals with acceptable speed.

The above examples contained only a single variable. In addition, the additional constraint

* was added in front of the first conjunct of the original query G. In general, however.

there may be many variables, and the additional constraint A need not appear as the first

conjunction in order to act as a generator for some variable xj.

3.6.3 Additional Restrictions on Arguments

A related way in which ramifications can help in generation is by restriction of additional
variables on a given database lookup.

- - -V .W %t

68 CHAPTER 3. SUPERSUMPTION

Example 3.9 Suppose W contains ground formulas of the form

Teaches((Instructor), (Subject), (Hour), (room)), (26)

and the following query is posed:

G = 3i0rTeaches(i, Math, 1pm, r). (27)

If it is known (or can be derived) that Fred is the only teacher of afternoon math

courses, i.e.,

V i, h Teaches(i, Math, h, r) A Afternoon(h) D i = Fred (28)

then one instead can look for tuples of the form

G' = 3rTeaches(Fred, Math, lpm, r). (29)

If the Teaches relation is indexed on its first argument, the constraint that
i = Fred can result in a large speedup in enumerating solutions. If the first

argument is the only argument indexed, then G requires scanning all tuples of

the Teaches relation. G', on the other hand, requires scanning only those tuples

with Fred in the first position.

Even if other arguments of the Teaches relation are indexed, G' can still be

cheaper than G. For example, if the second argument is indexed, one would

have to scan all Math classes to solve G, a set that would typically be much

larger than the set scanned in solving G', the set of classes that Fred teaches.

Query improvement via restrictions on variables is discussed thoroughly in King [44] and

by Ui. S. Chakravarthy [12,14,13]. Note also that equality is not the only useful restrict il)

that can be found. If the set of tuples for a given relation are sorted ac(:(ling to sonei

ordering of one of its arguments (a "sorted index"), then finding some restriction on the

range of values for this argument can also allow for a speedup. Again, see King [44] for

many such examples.

3.6.4 Ramifications as Filters

Besides helping to generate fewer possibilties to test, knowing ramifications can reduce the

expense of finding answers in by filtering partial answers. Consider a goal

G = 3x3yA(x) A B(x,y).

3.6. SPEEDUP VIA SUPERSUMPTION 69

In order to find the answers to such a goal, the set of x's for which A(x) holds is generated

and then for each of these x's, the set of y's for which B(x, y) holds is generated.

Suppose now that some ramification N = N(x) is derived for G. Consider the modified

(and reordered) goal

G' = 3x3yA(x) A N(x) A B(x, y).

If N(x) reduces the number of x's to consider, then one can avoid generating the set

of possible y's for each of the x's eliminated from consideration. Note, of course, that the

proper reordering of the conjuncts A(x), B(x, y), and N(x) is necessary to take advantage

of any possible speedup.

Restating the above, let a is the number of x's for which A(x) holds and b be the average

cost of finding all y's for which B(X, y) holds, where X is an arbitrary ground term. Then,

without using N(x) as a filter, O(ab) pairs of values must be considered for the ordered

conjunction Bx~yA(x) A B(x, y), that is

Cost(Solving(G)) = Cost(Solving(A(x))) + ab. (30)

Assume now that N(x) holds only for some fraction - of the a answers for A(x). Then, for

ordered conjunct G' = A(x)A N(x)A B(x, y),

Cost(Solving(G'))

Cost(Solving(A(x))) +

aCost(Solving(N(X)) +

ab

n

In other words, only I of the pairs (x, y) that were considered for G need be considered for

G'. By filtering one generated set, first, the size of its cross prodict with a nother set il;Is

been reduced.

Example 3.10 Suppose we are looldng for the set of radical staff members of

presidents, that is,

G = 3x3yPresident(x) A OnTheStaff(.. y) A Radical(y). (3l)

In order to find the pairs (x, y) satiS Dviig t his ,rzIula, we would have to '(,, 'at,

thw 0 .r's for which President(x) hold, ;nrd t lwie for ,ac of these .10 pr,.idit"
we uist genterate the saly A- people for whoin OnTheStaff(r, q) holds, for someI(

:A

70 CHAPTER 3. SUPERSUMPTION

y. Finally, Radically) is looked up on (x, y) pairs already generated. It generate.,

no new pairs (although it may eliminate some old pairs), so in total, 40K pairs

of values will be considered.

Lookup Number of Values Generated

President(x) 40

OnTheStaff(x, y) K(2

Radical(y) (32

Product 40K

Now, suppose W contains the proposition "Only a Democrat would have a

radical on his staff," that is,

V u, v [Radical(v) A OnTheStaff(u, v) D Demnocrat(u) 1.(33)

Since Demnocrat(x) is a ramification of G, consider the new ordered query

G'= xly President (x) A Demnocrat(x) A OnTheStaff(x, y) A Radical(y). (34)

It is true thiat all 40 presidents must still be generated, but only 6 of the 40

presidents have been Democrats.' Thus, the ramification Demnocrat(x) filtered

the sct of '10 presidents to only 6 Democratic presidents. By doing the filtering

b~efore generating the cross product of x and y, we generate only 6K rather tha~n

40A- pairs as shown ini Figure 35.

Lookup Number of Values Generated

President(x) 10

Demnocrat(x~) 4 (

OnTheStaff(x, y) (35)

Radical(y) I

Product 6 A"

lFi,o 9 illnst ratve, how filterinug works in 11w hu xarnple. The J)i-esidllt s are

along the1 x axis, and ho yertical lineos reprosent he staff niembers, of' eachi of

tlic jmJ'si,('1 'l "ov (;' C.on1 I))' bold(%ertic;ul lines, are uneeded. whevreas to

solv'o C ;ill .l0* vert icadlihues are needed. 1

Wil,)Iu m f~t~~ D) Ioos~vlr H[ami 5j lrtiri~ It I> Ik,-trr i- a~i'~tIt Ii~ n d lJ ilnln

.it, r

3.7. SUMMARY 71

Staff

A Ii •
President

Figure 9: Using a Ramification as a Filter

Note also that the ramification Democrat(x) would be a terrible generator in

this example. Since there are many, many more than 40 Democrats, trying to

use the ramification Democrat(x) as a generator would have generated this huge

set before using President(x) to reduce the set to only 6 Democratic presidents.

3.7 Summary

This chapter has defined ramifications, conditions that must accompany the achievement

of a goal, and supersumption, the reformulation of a goal to include additional constraints

such as ramifications. One purpose of finding and using ramifications is to widen the set

of heuristics kinown to be applicable to a goal. Viewing goals as being partial descriptions

of states, ramifications help complete the state's description thereby making a potentially
larger set of heuristics directly applicable. Alternatively, ramifications, acting either as

filtcr.s or gjencrators of goal re(rctions, can reduce the size of the search space in which

solutions might be found. As a filter a ramification is a formula that can he evaluated

for a given goal, arnd if false, the goal canl be imrnediately pruned. As a generator, thc

rarnilication is used as a sonrce of potential goal reductions; if it is signilicintly cheaper

to geaevo :,olutiot, via Ilie ra ruification than via the original goal, an overall -avilis (ain
res tl .

Thre has be il a good deal of work related to supersunmption, finding rmi Ii cations,

arl(l the rnechanisurs by which sulpersuniptions of a goal can be cheaper to solve thlan the

72 CHAPTER 3. SUPERSUMPTION

original goal. The related work will be discussed that the end of Chapter 4, which discusses

procedures for finding ramifications of a goal.

1'

Chapter 4

Finding Ramifications

4.1 Introduction

Chapter 3 defined ramifications and showed how they can reduce the size of a search space.

This chapter considers the problem of generating ramifications, that is,

Given a database W of facts and a goal G, what procedure P will enumerate

formulas N such that

W H= VXi ... VX, (GD N), (36)

where G is assumed to be in prenex-conjunictive normal form' with miatrix G a

prefix Ox, .. Ox. and such that y,, C {x1 ,. . .I xg}, where YN is the set of free

variables of N.

For any such procedure P, we miist consider a number of factors. First, how efficient

is 'P? Second, is P sound and complete, that is, for a given W and G, will P eventuallY

generate all N for which (36) holds and none others?2 Third, (does P lenld itself to caching

its results for use in finding ramifications on othier goals?

Four procedures will be considered for generating ramiifications:

1. Lexical Generation of Raiffications(P r)

2. Natural D~eduction on SUbgoals ('P.at),

3. Resolution on Goal Clauses (Ic),andl
I PrCInex-dlisjiti(tiv(' normnal form isalso a(ccptal.lc. Se'e Mlia [571 fl Iir(Iltat iou of p11 wI X I oil jilu(ti(I

andl prefix-disinrctive normal forms. [lhe imuportanit result is that tevt) srie of fiist-oij p, (hIt(at

a(ill'i, (',il he eouivrerteil to a logicallv (equivalent vent(-n(- i i)t(-ncx-cOIIjuIII(_t ii (01 ill (IWAPNIij11li((tiVC)

nornial formn in ti ne- propoitioual to the lenugth of filte formidua.
AcI Aetall I'. a slIIihtlIy we aker nuotion ((I: hneul in Sect ion 4.5) of, I oI)[(- tetIless S I f l(;I ,o %%Il I I-(l lIcc.

74 CHAPTER 4. FINDING RAMIFICATIONS

4. Resolution with Partial Subsumption (PRPS).

The first two methods, PLe, and PNat, are sound and complete, but terribly inefficient;

they are briefly presented to show that soundness and completeness are easily achieved, but

in and of themselves, these procedures are of little interest. The remaining two methods

are based on binary resolution [76] under the set of support restriction [105]. The use of

resolution in these two procedures differs from the usual use of resolution. Traditionally,

resolution has been used as a refutation technique, that its, a technique for showing that a set

of sentences is unsatisfiable. PRGS and TPRps use resolution as a deduction technique, that

is, a way to find logical implications of a given sentence (Section 4.5 contains a discussion

on the motivation for such usage of resolution.) PRGC is a straightforward use of resolution

as a forward inference technique. Soundness and completeness results are proven for PRGC

in Section 4.5. PRPS is a less obvious and superior way in which to find ramifications.

P*Rps derives ramifications via resolutions on the world model W, but restricts the allowed

resolutions via a restriction defined in terms of the goal G. PRPS allows different goals to

share their searches for ramifications, and even without such caching is identical in efficiency

to PRGC.

Complexity of Finding Ramifications For arbitrary first-order formulas, the complex-

ity of finding ramifications is bound by the limitation that the set of ramifications of a goal

is recursively enumerable, but not recursive. A procedure such as PLX is such an enumer-

ation procedure, but there is no procedure to decide in finite time whether an arbitrary

formula is or is not a ramification of a given goal. It is easy to see this: If there were such a

algorithm, one could decide whether a given formula N is a ramification of the goal "true",

that is, whether or not

WkN,

a known impossibility. Thus, one can enumerate all ramifications, and one can determine

in a finite (though unbounded) amount of time that a given formula is a ramification of a.

given goal and world model, but one cannot in general determine in a finite amount of time

that a given formula is not a ramification of a given goal and world model.

4.2 Lexical Generation of Formulas (PLex)

One sound and complete but very inefficient method of generating all ramifications of a goal

is to systematically generate every possible well-formed formula (wff), checking each one to

see if it is a iainification of the goal G. Procedure PLe is an outline of such a procedure.

4.3. NATURAL DEDUCTION ON SUBGOALS (PNAT) 75

(0) Procedure PL,.,

(1) c i- 0 (* number of candidate wffs so far *

(2) for I +- 1ito oo do (* length of wff *)
(3) F1 +- { f If is a wif of length I and contains free variables x0 g x}

(4) for each f E F1 do

(5) B, +- W UCN F(-i(Vxl ...Vx, (D!f)))
(6) c <-c+1
(7) fork - Otocdo

('R) r-result of a resolution step on Bk (if possible)

(9) if r = NULL then output(fk)

It is easy to see that PL,., is complete. There are a finite number (modulo variable

names) of wffs of a given length and quite simple to find an algorithm for generating them

all in a finite length of time. Such an algorithm is assumed in Step 3. Steps 4-6 set up

the base set for checking (via resolution) whether a given wif f, is a ramification of G.

Finally, Steps 7-9 performs a single resolution step oil every candidate wif f generated so

far, outputting any f for which

W =VX ... VX9' (D!) (37)

Note that since a procedure checking a given f will not necessarily halt there must be

interleaving of the chiecking of formulas of a given length with generation and checking of

formulas of greater length. Procedure PLe., guarantees that every candidate wff feventually

receives an unbounded number of resolution steps in attempting to prove (37). Thus it is

guaranteed that for a given f, a proof of (37) will eventually be found if one exists.

Procedure P-,while sound and complete, is a very poor method of generating ram-

ifications. Its failing is that it does not u-e the problem at hand in guidling its search for

raiificaltionls, nor. does thle procedutre seem easily amnienalnle to such guidance. In ordler to

imike the p~rocedulire he responsive to the prob~lem, the subgoal and known facts themselves

muist be uised to guidIe the search for p)ossible ramifications-.

4.3 Natural Deduction on Subgoals ('Vt,)

1t olmllv tlie lv,)t kniowniedaJl' of deduictively coiumplet & systems for [irst'-uuder predicate

calculus are various natural dleduiction scheines, for exampulle, the Gentzen systemi p rosettedl

SDduclive rornptteness is to he care fifty oist inagaishrd hlorn Yii jotolzon comiploicness. A Yvst-etn isde
'd11ctl C ollj)I1(2 i[(()I aiiY 1iiopositioii eliailcd by a sc't of plopi)stiolIs ttiecl Xsi a td1I II lion of I hat

* &* N~~'9**'e l4

I ~r N'~ -. N N -*- ~l

76 CHAPTER 4. FINDING RAMIFICATIONS

in Manna [57], page 108. Let us suppose a world model W consisting of a finite satisfiable
set of closed well-formed formulas of first-order predicate calculus. Let G be a closed formula
in prenex-conjunctive normal form with matrix G and prefix ox, ... OX g .

The procedure PNat follows. Note that Step 2 is only partially specified. Even though
the natural deduction system is complete, nothing has been stated about controlling the

natural deduction steps. To insure that every possible ramification is eventually deduced,
there must also be a control strategy guaranteeing that every possible proof will eventually

be tried.

The PNNat Procedure:

1. Replace Variables x1,. . , aX of G via substitution a with a set of new and distinct
constants X 1,...,X,.

2. Apply Natural Deduction Rules to W U {Ga}

3. Backsubstitute: For any formula N' deduced, return N = Vy, .. Vy,,(N' r - 1), where

{Yi,..., y} is the set of free variables in N'a-1. 4

The replacement of the variables x .. ., x. by new constants is needed so that the natural

deduction will not deduce "ramifications" that are not true for all values of the variables of
G in the formulas deduced. Since these constants are arbitrary, any formula N deduced is
entailed for all values of xl,. . ., xg. By soundness of the natural deduction system, for any

formula N' derived,
WGu k N

and by the Deduction Theorem,

W (Gor N).

The inverse substitution a - can be applied to nz to regain the original froe variables xl,..., x,.

PN Nt is a complete method for finding ramifications of a subgoal. It is far better than

PLe, in that it is guided by the database W at hand. However, it is still lacking an essential

feature - it is not sensitive to the actual goal at hand, that is, it. wvill just as readily find

implications of two random facts in the database as it will combine known facts with the

goal in order to produce ramifications that depend upon the goal. But, The ramifications

of most interest are those which depend upon the goal.

proposition. A system is refutation complete if "false" can be deduced from every unsatisfiable set of formu-
las. Resolution is refutation complete, but not deductively complete. For example, given a set of formulas
la, -a V b), resolution cannot derive the formula b v c in spite of the fact that (a, -(# V b) entails b, V c.

4It is assumed. without loss of generality, that the set of variables of N' and of G are disjoint. If not, the
names of free variables of N' must be changed.

r £ V~. *.w E VA

Il
4.4. DEFINITIONS FOR RESOLUTION-BASED FORWARD REASONING 77

In order to find ramifications that are consequences of the goal rather than the database
alone, the search must be restricted to those formulas that depend upon the goal for support.
Although we could constrain natural deduction to make only those deductions, it is easier
to do so using resolution.5

4.4 Definitions for Resolution-Based Forward Reasoning

The PRGC and PRPs procedures use binary resolution [771 to generate ramifications. In
presenting the two procedures, the definitions and terminology of this section will be it~cful.

In the rest of this chapter, it will be assumed that W consists of a finite set of clauses,
each clause being implicitly universally quantified over each of its variables. Recall that a
resolution refutation

Recall that a resolution refutation begins by creating the base set, that is, WuCNF(-,G).
where CNF(f) is the set of clauses in the conjunctive normal form of f. It will be assumed r
that unless otherwise specified, all set of support deductions6 have CNF(-,G) as the initial
set of support. Each clause C in the set of support is the denial of the conjunction S =
3y,... 3y-C, where {Y,...,yc} is the set of variables in C. S can be viewed as a goal to
which the original goal G has been reduced, that is, if we can find a solution to S we would
also have a solution to the original goal G.

Example 4.1 Suppose wl = -Zebra(z) V Striped(z) E W and G = Striped(x).

CNF(-,G) { --Striped(x)} and via resolution of this clause against wl, the
clause -,Zebra(y) would be derived. -,Zebra(y) is the denial of the subgoal
3yZebra(y) to which we have reduced the original goal G.

The Extended World Model W* is the set of all clauses from W, all clauses wit 1h all
its parents in W*, and no other clauses. In other words, W* is all clause s derived strictly
from W. and as such, for all w E W*, W H w.

The Goal Set G* includes CNF(-G), any clause with at least one parent. in G-. and no
other clauses. G* is synonymous with the so of support obtained by starting with CN F(-,G).

Given the above definitions, every deduction step on bases et W U CNF(-G) fils i1to
exactly one of th following classes:

"Use of a natural deduction. as opposed to a rcsolutjion-biLsed sy'stemi1, does riot)1(,, h.c 11silg It, goal
in directing the scarch. See, for example, 'o~orr ad Moore [7,61 or Bledsoe [4]

.See Section 2.r1 for definitioJIS of set of sutppot and set of support ldul(tio..

78 CHAPTER 4. FINDING RAMIFICATIONS

1. WG Resolution - a resolution between a clause of G" and a clause of W* yielding

a new clause of G*.

2. GG Resolution - a resolution between two clauses of G* yielding a new clause of G*.

3. G Factoring - factoring a clause of G* yielding a new clause of G*.

4. WW Resolution - a resolution between two clauses of W* yielding a new clause of

W*.

5. W Factoring - factoring a clause of W* yielding a new clause of W*.

Standard problem solving techniques can be viewed in terms of these resolution types.

Backwards Reasoning (Goal Reduction) consists of GG and WG Resolution and G Factoring

Steps. Forward Reasoning from the known facts of a problem consists of WW Resolution

and WW Factoring Steps. Because most problems are such that goal reduction techniques

search a smaller part of the space than forward reasoning from the known facts, we often

restrict ourselves to backwards reasoning techniques such as the set of support strategy (of

which backwards chaining is a special case). While generation of ramifications is a form of

forward reasoning it differs from the common usage of forward reasoning in problem solving

in a crucial way: Rather than reason forward from the known facts for an entire problem,

ramifications are generated by reasoning forward from goals created in the course of goal

reduction.

4.5 Resolution on Subgoal Clauses (PRGC)

Procedures PRGC and PRPS are based upon binary resolution [77]. Traditionally, resolution

has been presented as a method fr refutation of a. set of clauses, that is, a proof that the set

of clau,(cs is unsatisfiable. Such a. view is reinforced by resolution being refutation complete,

but not deductively complete - resolution can deduce false from any unsatisfiable set of

clauses, but cannot deduce all sentences (or even all clauses) entailed by a set of clauses.

In practice, however, resolution is very useful as a deduction rule as well. As was

discussed in Chapter 2, goal-directed backwards reasoning can be performed via the set

of support restriction on resolution. Further ordering of the allowed resolution steps gives

depth-first, breadth-first or other search behavior. The main reason that resolution is ueful

in spite of its lack of deductive completeness is simple - the. entences entailed by the base

set but not deducible using resolution are generally not of interest. As was seen in Chapter 2

and as will be seen in the following sections, if resolution cannot derive a proposition P,

4.5. RESOLUTION ON SUBGOAL CLAUSES (l-RGc) 79

it can derive a set of clauses which together are at least as useful as P. In backwards

reasoning, useful will mean weaker, and in forward reasoning stronger.

The RGC Procedure Let G be a closed formula in prenex- conjunctive normal form with
A matrix G and prefix ox,1 ... oz.. Procedure PRGC is ps follows:

1. Replace Variables X1 . . of G via substitution a with a set of new and distinct

constants X 1 ,... X9 .

2. Perform Set of Support Resolution 7 on base set W U f{6o) using the conjuncts

of Gci as the initial set of support.

3. Backsubstitute: For any formula N' deduced, return N = Vy, ... Vy,,(N'a- 1), where

f{Y1, - -, Y,} is the set of free variables in N'au'. 8

Let us illustrate PRGC with a simple example:0

Example 4.2 Let G = 3x~y(A(x) A -iB(x, y) A CQy)) be the original goal, and

let W = { -iA(z) V E(z, v) V -,D(z, v), -iD(q, r) V -iC(r) V H(r, s), I(t)}.

1. Replace Variables: Let 0 = {x <-X, y +- Y} yielding GO=A(X) A
- B(X, Y) A C(Y)

2. Perform Set of Support Resolution on base set WU{JA(X), - B(X, Y), C(Y)}

and initial set of support {A(X), -B(X, Y), C(Y)}. The resolution steps

in the deduction tree below illustrate the derivation of the clause N' 0

E (X, Y) V H (Y,rin).

A(~ V E~, v V ~~) -(q, Y) V 11(Y,) CY (

3. Backsubstition into E(X-, Y)VH(Y, in), yields the ramification N ViIE(x, y)v

H(y, i)

Sce Section 2.5.1 for (firiitiofl of resolution, set of support, and deductions.
"It is assurmcd. without loss of generalitY, that the set of variables of N' arid of G are disjoint. If riot, the

laines of free variables of N' mnust be changed.

80 CHAPTER 4. FINDING RAMIFICATIONS

As was the case with PNat replacement of the variables of G's prefix prevents the res-
olution steps from deriving ramifications that are ramifications for any values of the free

variables of G. For example, consider a goal 3xA(x) and a world model W containing the

clause -,A(4) V D(4). Without substituting some new ground variable for the x in A(x), one

might think that D(4) is a ramification of A(x). Indeed it is not, since

-,A(4) V r(4) V= V x (A(x) D D(4)).

4.5.1 Soundness of 'PRGC

The soundness of PRGC is an immediate consequence of the soundness of the resolution

procedure.

Theorem 4.1 (Soundness of PRGC) For any goal G, if 'PRGC returns N then N is a rami-

fication of G.

Proof: PRGC starts with base set W U Ga. Note that since Ga is a set of

ground clauses, it is already in conjunct normal form. By the soundness of the

resolution and factoring rules (See, for example, Theorem 5.1, page 72 of Chang
and Lee [15]), we know that any clause N' derived via the resolution procedure

is a logical consequence of the base set, i.e.,

W UGa [- N', (38)

or by the Deduction Theorem,

W [Ga D N'. (39)

Since a is a ground substitution to arbitrary constants that do appear in XV,

W k Gaa 1 D Na-,

and

W Vxj ... Vxg(G D Vy, ... Vy,,(N'-')),

or finally,

W H V., ... Vxg(; D N).

I SI

. :!;S

4.5. RESOLUTION ON SUBGOAL CLAUSES (PROc) 81

4.5.2 Completeness of PRGC 0

The following theorem is the basic completeness result for PRGC:

Theorem 4.2 (Completeness of PRGc)9 Suppose we are given

1. W, a satisfiable set of clauses, implicitly universally quantified

2. G = {gj,- .- ,gg}, a set of ground literals, and

3. N = n V ... V nn, a clause with variables {Y,..., Ym}

such that W k (gl A ... A g9) D Vy1 . . .VymN and such that W K N, then there exists 0

a set of support deduction of clause M from base set W U G with initial set of support G

such that M subsumes N.

Proof Since W k (g, A ... A gg) D Vyl ... VymN, then for new and distinct

constants)1',. .. ,Y,, and substitution 0 = {y - Y1,. .. , ym Ym), it must be

that WUG k NO. Thus, the set WuGU{-'n0, -nO} is unsatisfiable, and

by Herbrand's Theorem, there exists a finite set C of ground instances of the
above set that is unsatisfiable. Let C, be the set of ground instances of clause

of V Lhat are in C, and similarly define Cg C G and C,. C {-n 1 ,... -fnmo}.

By hypothesis, W K N and therefore W K NO, since the Y', are arbitrary. Thus

C,, U C, is satisfiable, and so there must exist a set of support refutation of C

from initial set of support C9 . By Lemmas 2.12 and 2.13, this refutation can be

converted to a set of support deduction of a clause M' with base set C'o U Cg,

initial set of support C., and such that M' C NO. We now use the Lifing Lemma

to build another deduction in which the clauses from C, are replaced by the
corresponding clauses from W. This builds a set of support deduction of a

clause M from W U G and initial set of support G, and such that Mp = M' for

some p. So, we have Mp C NO, but since 0 is invertible (i.e., the Y, axe distinct),

MO C N, where 0 = p - 1 . Thus, there exists a set of support deduction of

a clause M from base set W U G, initial set of support G. and such that M

subsumes N. I

The above result does not say that PR,GC canl deduce any rarnification of any conjunciivV

"oad. Instead, it says that if it cannot deduce that ram i ficat iou. it will d(duc(01W that is I.

at least as powerful. Before discussing this, a word on clausal forin is in order:

9This theorem, though found independently, is a variation of theorems prov, . 1)y Lee [501 and Mini 0771

and Fiiter [70]. Sce Section 4.8.8.

H
-U~- LIM ,-A -A . U

82 CHAPTER 4. FINDING RAMIFICATIONS

An arbitrary formula is not necessarily equivalent to its conjunct normal-form. The lack ,

of equivalence arises due to Skolemization.

Example 4.3 A(K) is a conjunct normal-form for the formula 3xA(x), where K

is a Skolem constant. Suppose the domain is the set of natural numbers and A(O)

is valid, but -iA(y) for all y > 0. Then A(K) is false under any interpretation

in which K is assigned a non-zero constant, but 3xA(x) can still be true under
such an interpretation.

Note also that the conjunct normal-form for a given formula is not unique - one can

choose any new name for Skolem functions.

What Theorem 4.2 says is that for some way of converting an arbitrary formula N to

conjunct normal-form, PRGC can derive a set of clauses N' such that each clause in the

conjunct normal-form of N is subsumed by a clause of N'. 0

One iiiight question whether finding a subsuming clause is of value. After all, the original

goal itself is "at least as powerful" as the ramification in the sense that the necessasry

constraint can be derived from it. It turns out, however, that subsumption is just the

desired relationship between an arbitrary clause N and a clause N' derived by PRGC. The

subsumed clause N can differ from N' only in (1) having more disjuncts (literals), and

(2) having some variables in N' replaced by constrants in N. It immediately follows that

the subsumed clause N is a ramification if N' is a ramification. It is preferable to know

that A is a ramification of G rather than that A V B is a ramification. Similarly, it is

preferable to know that VyA(y) is a ramification of G rather than to know only that A(4)

is a ramification of G. Stated differently and only slightly inaccurately, PRGC does can find

arbitrary ramifications; it simply eliminates unnecessary variable bindings and unnecessary

disjuncts.

4.5.3 Caching the Results of PRGC

In performing goal reduction on some goal G, it is likely that one will encounter many

similar subgoals. In terms of resolution, many clauses in the set of support will have sets A

of literals in common. 10 As a. result some of the ramifications of one subgoal clause will

often be the same 1 as the ramifications of other clauses; it would be wasteful to generate

these ramifications from scratch for each similar subgoal clause. In addition, it is usually

im)ossible to compute all the ramifications of a, subgoal. For a given subgoal clause it is

")Modulo variable names
"Again modulo variable names S

MENEM~

4.5. RESOLUTION ON SUBGOAL CLAUSES (PRcc) 83

desirable to store the results to date in order to begin the search anew sometime later. As

will be seen in Section 4.7, a third reason to cache ramifications is that subgoals of a goal

usually inherit all the ramifications of that goal.

Fortunately, there is a straightforward way to cache such results, namely, in W itself.

By definition, if clause N is a ramification of conjunction G = G1 A ... A Gg, then

W k -,G1 v... v -,G9 v N,

and so -iG V ...v -Gg V N can be added to W.

If the ramification follows from a proper subset G' of the conjuncts of G it is preferable

to note this fact in W via a clause -,G' V N instead of -iG V N.

et us refer to G' as a foundation of N, that is,

Definition 4.1 For a conjunctive goal G and a clause N, where N is a ramification of G, a

a foundation of N is any subset G' of the conjunction G such that W -G' V N.

One would like to require a foundation to be minimal, that is, that no subset of a foundation

is also a foundation of that ramification. Unfortunately, the problem of determining whether

a given foundation is minimal is semi-decidable, and minimality will not be required in the
discussion that follows. "

A given deduction of a ramification N from a goal G may not involve all of the conjuncts
of G. While minimality is too strong a condition to require, it is easy to note only the

conjuncts of G that were actually needed in the given deduction of G. To do so, PRGC can

be modified to record such a foundation of each ramification deduced. Let us notate the

foundation of a clause i as Fi. The modified procedure is:

1. Replace Variables x1,..., x. of G via substitution a with a set of new and distinct
con sta nts -A , ••- . , .!)

2. Record Initial Foundations of clauses from W and literals of Ga. For every

clause w of W, F,, F }. For every literal g in Ga, FY = g.

3. Perform Set of Support Resolution on base set W U {Gj} u;ing the colijuncts of

Ga as the initial set of support. ['or each clause 71 deduced, if n has only one parent/,.

then F = I. If n, has parents 1) and q, then F,, = F U F.

4. Backsubstitute: For auy forrnul N' deduced, return N = Vy, ... Vy,,(N'a '), \NVh(.e

,, } is the set of free variables in N'aT- 1. In addition, the clause ((V -, "')VN)
may be added to W, where y) is a. unifo rn renaming of the variables in (',/ I\") V N.

84 CHAPTER 4. FINDING RAMIFICATIONS

Example 4.4 Suppose we are given

G = {A(y), B(y, z)}

w, = -,A(m) V C(m, n)

W2 = -iC(o,p)VD(o)

w1 , w 2 E W.

The substitution {y -+ Yz -- Z} is used to replace the variables of G. When

PRGC generates N, = C(Y, n), FN, is {A(Y)} so -iA(q) V C(q, r) can be added to
W, where q and r are new variables. Similarly, upon generation of N 2 = D(Y),
-,A(s) V D(s) can be added to W.

4.6 Resolution with Partial Subsumption (PRPS)

The PRGc Procedure of Section 4.5 takes a conjunction of literals G = g, A . .. A g. and

reasons forward from it in order to generate ramifications. Unfortunately, G does not appear

in the normal course of resolution (or resolution-based residue techniques); its nega*ion, 12

the clause C = -,G appears in the set of support. In order to use PRGC a new base set

BRGC = W U -,Cc must be constructed (where a is a substitution replacing variables of G
with new and distinct constants) on which to perform resolution.

By a slight modification of PRGC backward reasoning (goal reduction) and forward
reasoning (generation of ramifications) can be performed without re-negation of goal clauses
and using the same resolution inference engine. The modified technique will be called

"Resolution with Partial Subsumption" 13 or Pnps.

"Pnps is a severely restriction on set of WW-Resolution and W-Factoring steps, gener-
ating the same set of ramifications ramifications as were generated by TP'.GC. Instead of

directly generating the ramifications as does PRGC, PRPS generates clauses of the form

P = cl V ... V cm V nV...Vnn,

where Pc = cl V ... V cm subsumes the negation of a G and PN = n, V ... V n,, is a

ramification of G. As stated above, if resolution is being used for goal reduction (as in
Resolution Residue), the conjunct G will not explicitly appear, but rather its negation.

"More accurately, the disjunction of the complement of each of its conjuncts.
"The name "Partial Subsumption" has been used to show the similarity to Chakravarthv's use of the

same term (Chakravarthy [12,14,13]).

4.6. RESOLUTION WITH PARTIAL SUBSUMPTION (PRPs) 85

0

Example 4.5 Suppose W contains clauses -,AVB and -iBVC. Given G = AAZ,

PRGC it negates the clause -iA V -,Z that actually appeared and derives the
ramification C. In contrast, PRPS simply resolves the two clauses of W* together

producing a new clause -,A V C stating that C is a ramification of any subgoal
containing the conjunct A.

The above scheme has the advantage that the same database can be used for both
forward and backward reasoning. In addition, if the results of forward reasoning happen to
apply to more than one subgoal, they will already be present without any explicit caching

mechanism. Let us now explore PRPs in more detail.

4.6.1 The 'PRps Procedure

Suppose that W is a satisfiable set of clauses, and that there exists a goal G = G, A... A Gm,
where the Gi are literals. In other words, -,G E G*. Let a be a substitution replacing each

variable of G with a new and distinct constant.

The PRPS procedure is stated as the following restriction on resolution as follows:

For CG E G*, PRPS starts with base set W and allows any resolution (or
factoring) steps such that the resolvent (factor) contains a literal L that unifies
with a literal of CGa.

Note that it is impossible that a resolvent (or factor) C have a literal that unifies with
a literal of CG unless the same is true for at least one parent of C.

Example 4.6 Given goal G = A(x)AB(x)AC(x), a = {x -- X} and E',. C
~W, wvhere

w = -iA(z) V D(z)

W -D(y) V E(y)

11 =)3 D(4 vF(4)

ml= A(u) V -13(u) V H(ii)

Is= -l(v) V A(v),

PRPS can resolve w1 anwl w2 and add the resolveilt wc = -A(/) V E(1).

0l

86 CHAPTER 4. FINDING RAMIFICATIONS

PRPS can not resolve w, and w 3 because the resolvent -,A(4) V F(4) has no

literals that unify with a literal in -,Ga.

PRPS can not resolve w1 and W5 because the resolvent --I(s)V D(s) has no literals

that unify with a literal in -,Ga.

PRps can resolve w4 and w5 - the resolvent -,'(r) V -iB(r) V H(r) has a literal

that unifies with a literal in -,Ga.

It is tempting to try to use a stronger restriction, namely that if a parent has a literal that

unifies with a literal in CG, then the resolveia (factor) must also have a literal that unifies

with that literal of CG. It turns out that this is too strong a restriction for completeness.

4.6.2 Soundness of PRPS

PRPS is sound in that each clause deduced is the proof of a giveni ramification.

Theorem 4.3 (Soundness of PRPS) Suppose

1. W is a satisfiable set of clauses,

2. G' =-gl V ... V -1gg E G*

3. C cl V . .. V c. is a clause deduced by PTps.

Then there exists a substitution 0 and some non-empty C' C C such that CIO C G' and

w k (Adc') V(c- c').

Proof: The proof is quite straightforward. Let a be the substitution replacing

the variables of G by new and distinct constants. Since PRPS performs resolution

on base set W, any clause C generated by "PRPS is such that W C. So, for

any C' C C,

w k (A(-C') D V - c').

Furthermore, since every clause C generated by 'PRpS contains at least one

literal that unifies with a literal from G'a it is guaranteed that there is some

substitution 9 such that a.t least one of the]iterals in CO is a literal of G'. Thus,

C' need not be empty. I

4.6. RESOLUTION WITH PARTIAL SUBSUMPTION (PRps) 87

4.6.3 Completeness of PRPS

The basic completeness result for PRps is similar to that for PRGC - not every ramifica-

tion N can be deduced, but ramifications that subsume every clause in a conjunct normal

form of N are deducible by P/ps. In addition, the deduced clauses tell which conjuncts

of G were needed for the deduction.

The completeness result for PRps is Theorem 4.7, but prior to proving it, some prelim-

inary results are needed.

Lemma 4.4 (Bubble Lemma) Suppose that D' is a binary resolvent nf clauses C' and C'.

Suppose further that C1 = C'O- 1 U M and C2 = C20- 1 UN for some substitution 01 and 02,
and sets of literals M and N. Then C1 and C2 (or factors of C1 and/or C2) have a binary

resolvent D such that for some 0, D' C DO, and DO - D' C (M U N)O.

Proof By the Lifting Lemma (Lemma 2.4), the clauses CIO 1 and C 2
- (or2

facotrs of these clauses) have a resolvent Q such that D' is an instance of Q, that

is, for some substitution 0, QO = D'. The addition of literals M to clauses C1 IO-1

and N to C202 1 does not change the fact that 9 is still an mgu for literals

in CO1¢ - 1 and C202 1, and thus clauses C1 and C2 (or factors of these clauses)

must also have a resolvent D via mgu 0. All literals present in Q will also be

present in D, so D' C DO. The additional literals of D will be from (Al U N)9.

so DO - D' C (M U N)O. Note that some of the literals of (M U N)O might he

identical to literals of Q, and thus it is not correct to say (D - (M U N))O = D'.

I

Lemma 4.5 (Bubble Lemma (Factoring)) Suppose that D' is a factor of clause C'.

Suppose further that clause C = C'p'- 1 U M for some substitution (p, and a set of literals M.

Then C has a factor D such that for some 0, D' C DO, and DO - D' C MO.

Proof By hypothesis, there exists some substitution p, a most general unifier

of two or more literals of C'. Since (C - M)'p = C'. it must be the case that

the substitution (pp unifies two or more literals of C, and thus D' C D(pp and

D'pp - D' C M(pp. Even if 'pp is not an mgu of the subset of literals from C.

the existence of (pp implies the existence of an nigu 0 with the above properties.

I

Theorem 4.6 (Bubble Theorem) Let M be a satisfiable .et of chn (s and U bc a .,am-

isfiable set of unit clauses such that there exists a set of support deduction D of a ,n.u, .N'

88 CHAPTER 4. FINDING RAMIFICATIONS

from base set MUU and initial set of support U. Let S be the smallest subset of M contain- 0
ing all :lauses with a literal L such that -iL unifies with some u E U. Then there exists a

set of support deduction of a clause C = N U P from base set M and initial set of support S,

where

1. N' is an instance of N, and

2. P subsumes the clause P' = V -'u for all u E U.

Proof: Since U is satisfiable, no two clauses of U can resolve against each other.
Therefore every clause from U in the fringe of D is resolved against a clause of M. 0

Consider a new deduction tree D' with a fringap Fringe(D') = Fringe(D)- U. For
every subtree of D, there will be a corresponding deduction, i.e., subtree of D'

for which the theorem holds. The proof is by induction on the height n of the
subtrees of deduction tree D'.

Base Case (n = 1): Since D is a set of support deduction using nodes from
U as the initial set of support, every clause m in the fringe of D' is a clause that
resolved against a clause of U in D. Thus the clause m contains a literals whose
negation unifies with some u E U. In addition, m = nUp, where p is a singleton

set that subsumes P' (in other words, p contains the literal that resolved against
the unit clause of U), and nO = r, where r is the resolvent of m and a clause

from U in D.

Induction Step (n = k): Assume that the theorem holds for all subtrees
of height k - 1 or less. Each subtree of height k was created either via a binary
resolution or via a factoring step. If the step was a binary resolution step, by
Lemma 4.4, there exists a resolvent C = N U P such that (1) the corresponding

node in D is an instance of N and (2) therc exists a substitutioii (T such that

Pa C P'. Since by hypothesis at least one of the parent clauses of C was in
the set of support, then so is C. Simlarly, if the step was a factoring step, then

by Lemma 4.5 and a similar argument, the factor is in the set of suppport, the

corresponding node of D is an instance of some of the literals of the clause, and
the remaining literals subsume P'. I

The major result of this section can now be stated and proven:

Theorem 4.7 (Completeness of PRps) Suppose

1. W is a satisfiable set of clauses, S
2. G = g, A Agq is a conjunction of literals, such that W U {G} is satisfiabl,

usnamw l

4.6. RESOLUTION WITH PARTIAL SUBSUMPTION (PrFs) 89

3. N = nV ... V n, is a clause and a ramification of G given W, and such that W K N.

There exists a set of support deduction D of a clause M = MG U MN from base set W and

initial set of support S, where

1. MG subsumes -,G,
2. MN subsumes N, and
S. S contains exactly those clauses of W having a literal I such that -,I unifies with

some gi.
4. Every non-fringe clause in D contains at least one literal I such that -1 unifies with

some gi.

Proof:

Let a x = {X-- X 1,...,xg -+ Xg), where {xl,...,x..} is the set of variables
in G, and {Xl,..., Xg) is a set of new and distinct constants.

Let a,, = {Y1 - Y 1 ,. .. ,yn - Y,), where {yi, ... ,y,) is the set of variables

in Na., and {y 1,... ,Y,} is a set of new and distinct constants.

Let G = {gja,,...,gaa} and let N'= {-nlO'gn,..,-"nnnOo'On}.

Since N is a ramification of G, and because the X, and Y are distinct and
arbitrary,

W k (g1 9 A... Agga) D NaO,,,

and therefore the set W U G U N' is unsatisfiable. By Herbrand's Theorem,
there must exist a finite set H of ground instances of W U G U N' that is also

unsatisfiable. Since W U N' and W U G are both satisfiable, H must contain
clauses both from G and N'. Let the set of clauses in H from W, G and N' be

notated as W, G and N', respectively.
Constuction 0: Let W 0 be the subset of W constructed by removing from W
every clause g U m, where g E G, and let Ho = W 0 U GU N'. Since H0 contains 0

all the unit ground clauses g E O, kHo j H, and H0 is also unsatisfiable. Since
WUN' is satisfiable, so is W'OU N', and so by Theorem 4.2, there must then be
a set of support deduction Do of a clause No from base set 'o U (and initial
set of support G such that No subsumes (is a subset of) Na_ a,,.

Constuction 1: Let W-o be the subset of W 0 containing all clauses that con-

tain a literal I such that -Il E G. Based on deduction Do and Theorem 4.6,
there also exists a set of support deduction D, of a clause C1 = P1 U N1 from

base set Wo and initial set of support WOG, where N2 subsumes No (and there-

fore subsumes Naga,) and P sul)sules Vi -gi, for all gi E G. Furthermore,

1111,10 A -

90 CHA PTER 4. FINDING RAMIFICATIONS

since Wo contains no clauses with a literal I E G, every non-fringe clause of Dl

is guaranteed to contain a literal I such that -I E G.

Lifting: The Lifting Lemma can be used to turn Deduction D1 into the desired

Deduction D. Each node in the fringe of Deduction D1 can be replaced by the

corresponding clause in W. By induction on subtrees, the Lifting Lemma can
be shown to lift these variables to the root, deriving a clause M. Since each

clause of D1 contains a literal I such that -I E G, each non-fringe clause of D

contains a literal whose complement unifies with a clause of G. Furthermore,

since the Xi do not appear in W, each non-fringe clause of D con'ains a literal I

whose complement unifies with a conjunct of G.

By Theorem 4.6 it is also the case that N1 is an instance of MN, that is,

there exists a 0 such that

MNO = N, C Nagan.

But since (agOa,) is invertible,

MNO(Uan) - 1 C N,

in other words, MN subsumes N. I

4.7 Inheritance of Ramifications

So far, deduction of ramifications of a single goal has been considered. In practice, however,

finding ramifications and goal reduction via backwards reasoning are interleaved. Instead

of just wanting to know ramifications of a. single goal, it would also be useful to know

whether ramifications of a goal G1 are still valid for goals further down in the backwards-

reasoning deduction tree. If so, any work done in finding ramifications for a goal G, need

not be repeated to find the same ramification for goal G2 . Furthermore, to find additional

ramifications for G2 , forward reasoning could start from the inherited ramification rather

than from scratch.

Although it seems reasonable that ramifications can be inherited, it is not always the

case thaz a ramification of one goal is a ramification of its offspring. One reason is the

renaming and binding of variables, but that is easily taken care of. The other reason is

due to somewhat pathological cases involving the merging of two goals (GG-Resolutions,

in the terminology of Section 4.4). In this section, a precise formulation is givel for what

ramifications may be gleaned from ramifications of an ancestor goal.

4.7. INHERITANCE OF RAMIFICATIONS 91

Usually, ramifications are inherited from parent nodes (modulo variable substitutions).
It is easy to see why this is so: Suppose a goal G, gives rise to a new goal G2 via backward
reasoning. Suppose also that G1 has ramification N. Since G2 was derived from G, via
backwards reasoning, then G1 could be derived from Gy by forward reasoning. But, since N
was derived from G, via forward reasoning as well,

FR ,~FR
G2 N,

that is, N should be derivable from both G1 and G2 by forward reasoning.

Example 4.7 Consider a goal G1 = C A D. If C D N, then N is a ramification
on G1. Suppose now that A A B D C is applied to reduce G1 to G2 = A A B A D.
Clearly, since A A B D C and C D N, then A A B D N, and so the ramification N
is inherited by G2.

Let us now consider inheritance of ramifications for clauses in G* for various possible
steps of a resolution refutation (See Section 4.4 for explanation of terms G*, W*, WG
Resolution, GG Resolution, etc.). Consider a clause CG E G*, that is, clauses from the
negation of the original goal G has been reduced via 0 or more resolution and factoring steps
to a clause CG. Let G1(y) = -CG. Suppose also that G1 has some ramification N. If G, is
further reduced to some new goal G2, will N also be a ramification (modulo variable names)
of G2? The next three subsections address that issue with a series of theorems which follow
easily from the definitions of resolution and ramification.

4.7.1 Inheritance under WG-Resolution Steps

The following theorem holds for WG Resolution steps:

Theorem 4.8 Suppose CG. is a clause from G*, Cw is a clause from W*, (11d CR is a

resolvent of Cc and Cw via unifier a. If N is a ramification of -,CG then Na is a ramificalion

of CR.

Proof: Let us represent the various clauses as follows:

C(,= -,LG V ... V -,. (40)

Cu' -iLw' V... V 'Lwm (-41)

CR = -LG2a V ... V -,,a 1 a V -L/j, 2a V ... V .L 1Vnz0, (42)

= r

92 CHAPTER 4. FINDING RAMIFICATIONS

where Li3 represents a positive or negative literal. Note that in representing CR as above,

we have assumed (without loss of generality) that

-LG~o = Ll,

Since N is a ramification of CG,

So, the following instance of (43) holds:

W k(LG A ... LGna) D Nor]. (44)

Rewriting (41) gives

LW2 A ... A Lwm) -'Lwi, (45)

and therefore

W [= (LW 2 or A . .. A Lwma A LG2 a A . .. A LGncT) D -iLwia7. (46)

But, TGja and LWIo' are identical literals, so

W k (LW2 a A ... A LwmUr A LG2 or A ... A LGOra) D Lrnao. (47)

Combining (47) and (44) gives the desired result:

W k (LW2ar A .. . A Lwmor A LG2a A . .. A L 0 n~i)) D 14, (48)

or equivalently,

W 1= -i'C1 D Nor. (49)

4.7.2 Inheritance under G Factoring Steps

Theorem 4.9 Suppose CG is a clause from G*, aind CR is a factor Of CG0 v~i unifier or. If

N is a ramification Of -'CG then No' is a ramification Of -CR.

Proof: Let us represent the various clauses as follows:

CG, - LG1 v... v -LGn (50)

Jill

4.7. INHERITA NCE OF RAMIFICATIONS 93

W1 = -AV-'BVG Gi=G w2 AV-'CVG

G= -A V B()/ 3=Av-

w4 = A V N G4 =-'B V-C (**)

()-N is ramification of G2.
(*)-N is not a ramification of G4.

Figure 10: Non-Inheritance of Ramifications

CRC' = -'LG2O' V . .. V -vLG, (51

where Li3 represents a positive or negative literal. Note that in representing CR as above,
it has been assumed (without loss of generality) that the factoring unifies only the first twvo
literals, that is,

LGI~~~~r = G U-(2

Since N is a ramification of CG

W k:(LGI A... LG,) D N. (53)

In additon the instance of (53) obtained by making substitution ar holds, s)o:

W k (Lcl A ... LGnr) D Nor. (54)

But, only one of the identical literals appears in (52), Lhat is,

W [k (LG2 a A... Lr,,,) D Na]. (55)

So, from (55) the desired result follows, that is,

W k -'CjR DNa. (56)

4.7.3 Inheritance under GG Resolution Steps

Rainifications arc iiot neccssatri!;' iiorited (i der GG- Resol ii lion. (Consider (lie follmvi ;ig
example:

CA1 I!1 1 11 11 1 ! IM 11!1 1U1

94 CHAPTER 4. FINDING RAMIFICATIONS

Example 4.8 Figure 10 illustrates a goal that does not inherit the ramifications

of its parents. Conisder a goal1 G and rules A A B D G, -,A A (C D G, and A D N.

In clausal and non-clausal form, these are as follows:

Clausal Form Non-Clausal

G, -nG G
to1 -,AV -B VG AA B DG

Wo2 A V -,CvG -A A C DG
wV3 -IA vN AD N

WG-Resolution (Backchaining) gives two new goals

G2 -AVn~B AAB

G3 A v -C -,AA C

Performing GG-Resolution on G,2 and G3 gives a new goal

G4 -,B V-,C BAG

Note that G2 has N as a ramification (via w,). Goal G2 gives rise to G4 via GG-

Resolution, but G4 does not inherit N as a ramnification (although some other 0

line Of reasoning may establish N as a ramification of G4).

Theorem 4.10 Suppose CA and GB are clauses from G*, CR is a resclvent of CA and GB

via unifie r a, and N is a ramification Of 'CA. Suppose further that the literal on which CA

and CB are resolved is not a member of all foundations of N, that is,

W = (LAI A ... A LA(i-1) , LAil A ... LA.) D N (57)

f~ .,= L..11 A .. A LA,. Then NaT is a ramification of -CR.

Proof: Let us represent tihe various clauses as follows:

CA = -LAI V ... V -LA, (58)

CH = -'LBI V . .. V -ILB,~ (59)

CWT = L,4 2 (T V ... V -'LA,1aT V -~paV . .. V -'Ba(60)

where L,, rep~resents a positive or neglative literal. Note that in representing CR as above,

we have assumned (without loss of gericrality) that

-LIT= LHI;a.

4.8. RELATED WORK 95

The result follows immediately from (57). We know that the instance of (57) obtained
by substitution a must hold, that is,

W H (LA 2 cr A ... LAn)a D Nor. (61)

Note that (61) is derivable fiom (57) assuming that i ='1, that is, the first literal is the one
resolved away. Since -'CR contains a superset of the literals needed in (61) to prove Na, it

must also be sufficient to prove Nca. Thus we have,

W H= (LA 2 oa A ... A LA,,J A LB2cT A . .. A LBma) D Nor, (62)

or

W 1=- -'CRU D No'. (63)

4.8 Related Work

4.8.1 McSkirnin and Minker

McSkimmin and Minlxer [69) was an early effort at using semantic information to improve

efficiency of database quieries. Via informnation stored in a seinantic network" 4 , McSkirnmin

and Minker (1) allowed unification of variables only wvith variables from the same domain

(semantic unification), (2) checked to see if a, quiery is inconsistent with a series of allowed

forms (semantic ivell-formcdness), and (3) based on information on the number of possible

answers to a quierY, chiecked t~o see whether all the answers to a query had been found and

tero-fore 110 more sea mci is twodcd (.qcfl2(tc arlion'i).

4.8.2 Stallrnan and Sussnian

Staliman and Stissmau's EL [901 wa~s anomig tht. first to explicitly uise forward reasoning in a

declarative forin to restrict ar sear1ch.' 5 EL's goals consisted of a set of variables t~o be 1)oind

in suich a wvay a~s to be consistenit wit i~ a model of variouis electrical circuiit comlpolets. Tlie

valuies of the variables were ctirrents, volt age. andl states of transistors. The svsteni had no

backwardls reasoning complonent or database lookup component, butt rather had proceduires

"4 The semantic netwvork uised 1b*y McSkiinimir arnd M inker %vas very close to prediacte logic, however.
"Earlier, David Waltz [102] line-labhiq! program had propagated constraints via special-puirpose

procediu re,.

96 CHAPTER 4. FINDING RAMIFICATIONS

for guessing values of variables. After each guess, it reasoned forward to find ramifications

of the existing bindings of its variables. Rather than allow random forward inference, EL's

inference was limited to one-step deductions, that is, instantiation of Horn clauses of the

form

AiA...AAn DN,

where all the Ai's were known to be true. After a new design decision was made, EL would

perform all possible one-step deductions in an attempt to either show the design decisions

to date to be inconsistent, or else to derive constraints on remaining circuit parameters.

4.8.3 MYCIN

While primarily a backwards inference system, in the MYCIN System (Shortliffe, Buchanan,

et al [96,9,171) it was beneficial to use a form of interleaved forward and backwards inference

iii certain cases. The backwards search of MYCIN possessed state information in what was

called contcxts. This state information was used in conjunction with forward reasoning

for two purposes. First, the preview mechanism acted as a filter on rules, that is, if the

premise of a rule could be immediately proven to be false, the rule could be eliminated from

consideration. Consider a rule A A B D C. Since large amounts of inference and (more

importantly) interaction with the user might be involved in trying to establish A, it was

critical to prune this rule if B was already known to be false. The second use of forward

reasoning was similar to using ramifications. In order to smooth the interaction with users,

it was necessary to ask questions in a fairly constrained fashion. One method for doing so

was to force a set of questions to be asked whenever a context was instantiated. Antecedent

rules were used to see whether answers to questions had already uniquely specified the

answer to other questions, and thus, obviate the need to ask the certain questions. The

forward reasoning was in the forim of one-step deductions, as in EL,, and results of one-step

deductions could cause other one-step deductions to be triggered.

4.8.4 Stefik's MOLGEN

Mark Stefik's MOLGEN planner [93,92] worked in the domain of genetics experiment

design. His basic notion was that in this domain, a hierarchical approach to experiment

design would require very little backtracking if only the constraints created at any point are

immediately propagated to the rest of the plan. At every point it was preferred to either

make decisions for which only a single choice is possible or propagate a constraint rather

than making guesses that might have to be retracted. Stefik dubbed such search control

the least commitment cycle.

I

4.8. RELATED WORK 97

Constraint satisfaction and propagation in MOLGEN was done by LISP procedures

for each constraint or constraint type. Each operator introduced into the plan could also

introduce a set of constraints, and had the ability to regress or progress constraints through

its action. One can view Stefik's constraints as a special class of preiequisite, a prerequisite

that one should satisfy via as a side effect of other actions or variable choices in the plan

rather than try to satisfy via introduction of special actions for this purpose.

4.8.5 King's QUIST

Jonathan King 's Ph.D. research [44] was embodied in a system called QUIST for "query

optimization by semantic reasoning." The notion was that besides standard syntactic trans-

formations on database queries, semantic restrictions upon the database could be used to

reformulate a query as a less expensive query. For example, if all ships above a certain

tonnage is known to be supertankers, and it is cheaper to find all supertankers than all

ships, this fact could be used in answering queries about ships. King defined the notion of

semantic equivalence transformations, transformations of a query Q to a query Q' such that
are not logically equivalent, but for every permitted interpretation, the two queries have the

same set of answers.

In order to generate semantically equivalent queries, QUIST defined a set of transfor-

mations allowing the system to do one-step deductions and manipulate conjunctions and

disjunctions. The process produced new, semantically equivalent queries that could be
cheaper to solve by the same mechanisms outlined in Section 3.6. Estimates of costs of

queries were established by working with well-defined models of the database ald queries.

It considered only the class of restrict-join-project queries, an incomplete but very useful

class of relational database queries, and used a simple model of access and storage (based
in thp work of Blasgpn and Eswaren [3] at IBM) to measure the cost of processing a given

query.

4.8.6 Kohli and Minker

In [45], Madhur Kohli and Jack Minker proposed controlling backwards search by using

integrity constraints.1 6 Their paper dealt with logic programs written in function-free or-

dered Iiorn clauses, and it assumed the presence of integrity constraints on the dat abase,

also expressed as Horn clauses. Like Ordered Resolution on 11011-clauses (See Section 2.4),

and in coatrast to Prolog, the search strategy is not restricted to be depth-first. The paper

161in I(ohli and Minkcr's terminology, the roles of "forward" and "'backwaud" arc re''crs:d. st , 1

98 CHAPTER 4. FINDING RAMIFICATIONS

proposed checking every goal generated against all integrity constraints, the pruning of in-

consistent goals, and notions similar to generators and filters.1 7 Kohli and Minker cached
ramifications they derived ("implicit integrity constraints" in their terminology), and be-
cause only Horn clauses were considered, all ramifications are inherited from parent goals

(See Section 4.7).

4.8.7 Chakravarathy, et al

In [12,14,13] U. S. Chakravarthy, Jack Minker and their colleagues have described the

extension of Semantic Query Optimization to deal with deductive databases.' 8 In Chakra-
varthy's system, it is assumed that there will be many, many queries and a fairly limited

number of integrity constraints. Rather than trying to optimize each query as King does,

Chakravarthy's system stores appropriate supersumptions with each intensional and exten-
siona] relation. When a query is presented to the system, it may then quickly see which
of its cached supersumptions are appropriate. Given the huge potential speedup on iarge

databases, it is worth the overhead of deriving and storing supersumptions with each rela-
tion. Note that it is usually combinations of relat:n)ns in a query that make supersumptions

useful. To cache all potentially useful supersumptions for each relation is combinatorically
explosive, but given Chakravarthy's assumptions about the number of queries versus the
number of relations and integrity constraints, it is reasonable to do so.

Chakravarthy starts with integrity constraints and intensional and extensional database
definitions stated in clausal form. To find potentially useful supersumptions, Chakravarthy

looks at partial subsumptions of definitions of relations, that is, definitions that are sub-
sumed by a subset of literals in an integrity constraint. Using subsumption rather than

simple unification forces the supersumption to hold for all values of all variables. The treat-
ment is quite similar to the PRps Procedure of this thesis (See Section 4.6, and the name

PRPS "resolution With partial subsumption" was chosen to point out the similarity with

Chakravarthy's approach to database optimization.

A number of other researchers have consider semantic query optimization on databases,
including Hammer and Zdonik [35], Xu [107] and Jarke et al [43].

7 It is not clear to the present author that the mechanism proposed for generators is guaranteed to produce
only correct answers.

°5 As described in Reiter [75], databases are divided into extensional and intensional relations, where
extensional relations are relations that can be looked up in the database, whereas intensional relations must
be reduced to combinations of inteiisional relations. The reduction of intensional relations takes place via
rules from which the extensional definition of an intensional relation may be deduced - hence the name
deductive database.

4.9. SUMMARY 99

4.8.8 Lee, et al.

Theorem 4.2, Section 4.5 shows that although resolution in not deductively complete, it can
deduce a clause that subsumes any clause implied by the base set. Although the proof was

done independently, it turns out that a virtually identical result was published exactly 20

years ago in Richard C. T. Lee's PhD thesis [50] and extended to linear resolution (of which
set of support is a special case in this case) by Minicozzi and Reiter [70] in 1972. Thus, it is
only fair to view Theorem 4.2 and Theorem 4.6.3 as very minor variations on these earlier
results. Thanks to Richard Waldinger and Mark Stickel for pointing out this research to

me.

4.9 Summary

This chapter has explored deduction of ramifications from a conjunctive goal G = G1 A... A
G,,,, where the Gi are atomic formulas. Two resolution-based procedures, PRGC and PRPS

are shown to be complete for this problem, though not in the usual sense of generating
all possible ramifications. Instead they are omplete in that for any ramification N, both
of these procedures will generate a ramification that is at least as "strong" as N. More
precisely, for every clause N, in a conjunct normal-form of N, PRGC and PRPS can generate
a clause N' that subsumes Ni. PRPS is superior to PRGC in that it is completely within the

framework of resolution on the world model W, that is, PRPS is a restriction on resolutions
on base set W that disallows resolutions unrelated to the goal G at hand, but still allows
all needed ramifications to be found.

In database retrievals, a single goal G is given and variable bindings for x must be found
such that G holds. As discussed in Chapter 2, the problems considered here involve goal

reduction, that is, reduction of the orignal goal to other goals via backwards reasoning.
Because ramifications could be deduced from any such goal, it is important to consider
whether the search for ramifications of one goal can be used in the search for ramifications

of another goal. There are two forms of sharing of search explored in this chapter: (1)
Inheritance of ramifications from parent goals, and (2) ('aching of ramifications along with
the goal conjuncts from which they were derived. Section 4.7 derived results for what

ramifications are and are not inherited from parents. A simple modification of 7P'RC;c for

caching ramifications and the conjuncts on which they are based is presented in Section 1.5.3.

PHp, ;, on the other hand, handles the caching of ramifications in a much more natural

fashion, at all times recording the goal conjuncts (and only those goal conjuncts) on which

a deduction of a. ramification is based.

Chapter 5

Conclusion

Synthesis problems constitute a major class of problems encountered in many fields. Robot

planning. circuit design, automatic generation of diagnostic tests, program synthesis, and

automatic theorem proving are among the synthesis problems commonly encountered in the

Al literature. Automatic design synthesis has been of interest since the very beginnings of

AL. Deductive approaches to synthesis problems, that is, constructing a design as part of

the proof of a theorem, date from the work of Green [32) and Waldinger and Lee 199] in the

late 1960's.

The current research continues in the tradition of deductive design synthesis. In previous

deductive synt, , sis, design has been a process of backwards reasoning from a goal formula,

representing the design as a term in the logic. In reasoning only backwards during the design

process, such systems have not considered interactions of various parts of the design already

specified with each other and with the remaining subgoals. In addition, representation of

the design as a term, that is, a composition of functions, has made it unnatural to reason

about the design, and has limited the set of design decisions that can easily be expressed.

This thesis has two main themes. First, for reasonable behavior over a. wide spectrum

of goals, the design process should be bidirectional; one should reason backwards from the

goal (goal reduction) and forward from the goal and any design decisions that have been

made (consistency checking and/or s upersumption). Second, designs should be repre.senled

as formulas rather than as terms. By doing so one gains expressiveness in representing

design decisions and the ability to reason directly about the design.

The main points of this thesis are summarized in the following sections. The first

presents the main contributions of this thesis. The second section summarizes its main

limitations, and the third suggests directions for future work in this area and improvements

of this thesis.

100

5.1. SUMMARY OF CONTRIBUTIONS 101

5.1 Summary of Contributions

5.1.1 A Framework for Design

Chapter 2 defined a residue, a new definition for specification of a design object. In this
formulation, both complete and incomplete designs are represented as single formula of
first-order predicate calculus. A formula is a residue, i.e., a legal design, if it (1) logically
implies the goal specification, (2) is consistent with the set of axioms describing the world,
and (3) is a conjunction of formulas, each of which can be assumed to be achievable in the
world being modeled.

The chief advantage of Residue's approach is that the system can use the entire set of
relations of the logic to be used to express constraints on the design. The ability to express
all desired design constraints is crucial during the design process, when imposition of an un-
necessarily strong constraint can lead to needless backtracking. In contrast, representation
of the design as a term limits the expressible design constraints to those for which therv is
a single pre-existing function.

Consistency checking corresponds to seeing that alr the constraints imposed upon the
design can be realized at once, an integral part of complicated design problems. Withot the
ability to check consistency of a design, one may not partially specify a component on which
other, possibly inconsistent, constraints will later be imposed. For a design represented as a
formula, this notion corresponds to consistency of the design formula with tle set of axioms
describing the world. In contrast, checking consistency of a design expressed as a. single
term is an ad hoc process. There is no general way to use a set of axioms describing the
world to check whether the object denoted by a given term is consistent with that set of

axioms. As a result, single-term approaches have usually been limited to design problems
in which consistency checking is not needed, a severe limitation.

5.1.2 Procedure for Design Synthesis

Chapter 2 also described two procedures, Resolution Residue and Ordered IResidi(l, for
generation of residues. Both of these procedures work by reducing a goal specification via
backwards reasoning to a set of primitively achievable specifications. Itesoltitior I esi(leu]
uses binary resolution for its backwards inference, and Ordered Residue utses an otmderd

resolution on born clauses.

For both residue proce(ires, appropriate cornplet enss resmits were pilov(,m. I'll, con-
pleteness results show that although not every residue can be gee rated. 'or ,very rsidle

not generated, a residue at least as general will be generated. •

102 CHAPTER 5. CONCLUSION

5.1.3 Supersumption

This research has dealt with the derivation and use of constraints derived from a goal (or
subgoal) via forward reasoning. Such constraints are called ramifications and the process
of using those constraints is called supersumption. Supersumption captures the notion that
one should not only consider the consistency of a partially specified solution, but should be
able to make use of any conditions necessary for consistency.

The Residue Procedure allows pruning of inconsistent designs during the design proce-
dure. Supersumption is a way to (1) avoid generating some of those inconsistent designs,
and (2) avoid some of the overhead of consistency checking over a large set of designs.

5.1.4 Procedure for Finding Ramifications

Chapter 4 presented two procedures for finding ramifications, constraints necessary for con-
sistency of a set of design constraints and any remaining subgoal. Both of.these procedures
find ramifications as a part of of the checking consistency process.

The first procedure PRGC uses resolution as a deduction procedure rather than its usual
use as a refutation procedure. Although resolution is not deductively complete, the com-
pleteness results of this chapter show that for every ramification not derivable by resolution,
a ramification that is at least as strong is derivable. In addition, PRGC uses conjuncts of
the goal as a set of support from which to perform resolutions. This has the important
propeity that any ramification that is derivable is derivable without resolving random facts
about the world with each other - all ramifications are derivable from goal conjuncts.

The second of the two procedures, PRps, has all the above properties of the PRGC with
one major difference: PRps derives ramifications in the form of facts that may be directly
added to the database of axioms about the world. Such facts record the ramification derived,
and the goal coniuncts that were needed to derive that ramification. By recording such facts,
other goals with conjuncts in common (modulo variable names) may use the result of the
previous derivation of ramifications.

5.2 Main Limitations of the Approach

5.2.1 Assumable Formulas must be Atomic

Chapter 2 makes the assumption that the design will consist of a set of primitively achievable
atomic formulas. Disjunctions aud conditions are thus excluded from designs. This assump-
tiomi appears both in the completeness theorems of Chapter 2 as well as in the Resolution
Residue and Ordered Residue procedures. In these procedures, designs are represented as

5.2. MAIN LIMITATIONS OF THE APPROACH 103

the negation of a single clause, that is, a design is a conjunction of literals. To represent a
design containing disjunctions, multiple clauses would have to be used for the design.

The severity of this restriction is not entirely clear. At first glance it would appear
that conditional plans would be impossible to build as residues, but in fact they have been
synthesized. To do so, it was necessary only to represent actions as mappings to one of
several possible succeeding states based upon the outcome of that action. It is as yet
unknown whether procedures can be found for generating non-atomic residues, and under
what circumstances it is desirable to generate designs out of such components.

5.2.2 Design and Subdesigns Have No Name

The Residue Procedure, in contrast to the single-term approach, does not reify the design;

there is no perfectly natural way to refer to the design as a whole, nor is there a way to
refer to portions of the design. Instead, t _t of design decisions comprising the design

are stated as facts describing the entire world. For example, it is awkward to say that

the cost of the design must be less than $1.00. One can probably avoid this problem by

introducing a relation on design components and designs (or subdesigns) such that the

relation holds for every component of a particular design (or subdesign), but to date, use

of such axiomatizations has not been explored.

5.2.3 Rederivation of Cached Deductions

A good deal of the power of supersumption comes from its caching of ra~mifications; the

(ached ramifications can be used to filter (prune) other design candidates without the

ramification being rederived. In this thesis, as in many other systems, the caching of the

result of a series of deductions does not memi that those deductions will not be perforiaed

again as forward reasoning from another goal.

In systems for which it is important to preserve completeness, it i, R difficult n-ohlemn

knowing when old results can be reused without further exploration of the path on which

they were found. The old path might not have been completely explored, or new facts

might enable derivation of new results that were not possible when the path was)reviously

explored.

104 CHAPTER 5. CONCLUSION

5.3 Further Work

5.3.1 Control Heuristics for Residue

Besides the usual search control issues in searching a search space, Residue involves both

forward reasoning (consistency checking) and backwards reasoning (goal reduction). Al-
though it is not logically necessary to check consistency of a design until it is complete, one

of the major motivations for Residue is the ability to quickly prune inconsistent designs.

To date, there has not been work on when consistency checking is heuristically appropriate
during the design process. Similarly, there is little known on how much effort to spend

checking consistency at any given point. Such a decision will depend upon such factors

as the branchiness of an upcoming decision point, how close to being overconstrained the

design currently is, and the extent to which the upcoming decision is perceived to further

constrain the set of design candidates.

5.3.2 Cost of Solving a Problem

In order to know when to use a given supersumption, one must be able to estimate the cost

of finding a solution to a given goal. To date, we have good models only under strong sets

of assumptions. In particular, we are good at estimating the cost of lookups on conjunctive

queries in extensional databases. For subgoals whose solutions involve backwards reasoning,

there is still very little work.

5.3.3 Control Heuristics for Finding Ramifications

As was discussed in Chapter 4, ramifications can be found as part of the process of consis-

tency checking. If one checks consistency of partially completed designs, there is a tradeoff

of forward and backwards reasoning (as mentioned above in Section 5.3.1). A similar trade-

off exists when forward reasoning is used to find ramifications for supersumption; good

heuristics to decide when to do such forward reasoning and what forward reasoning are

necessary. There may be cases where it would pay off to .look for ramifications, whereas

consistency checking would not be called for.

5.3.4 Probable Constraints

The above research has involved finding ramifications of a goal. As was mentioned in

Chapter 3, supersumption can be used with other constraints as well. For problems in which

not all solutions to a problem are needed, use of probable constraints, that is, constraintsWNW-di

5.3. FURTHER WORK 105

derived by plausible reasoning from a goal, is at least as useful as supersumption using only

ramifications.
The general use of probable constraints is equivalent to heuristic search. Finding prob-

able constraints by plausible reasoning from goals (and subgoals) and the addition of such
constraints to the goal at hand is a very specific form of heuristic search guidance. It has the
same control problems as supersumption with ramifications, and heuristics for search con-
trol applicable to supersumption with ramifications should be applicable to supersumption
with probable constraints as well.

4!

tII

Egis

Bibliography

[1] Avron Barr, Paul R. Cohen, and Edward A. Feigenbaum. The Handbook of Artificial

Intelligence, Volumes I, II, and III. William Kaufmann, Inc., Los Altos, CA, 1981

and 1982.

[2] D.R. Barstow. An experiment in knowledge-based automatic programming. AI,

12(2):73 -119, August. 1979.

[3i M. W. Blasgen and K. P. Eswaren. Storage access in relational databases. IBM

Systems Journal, 16(4), 1977.

[4] W. W. Bledsoe. Non-resolution theorem proving. AI, 9(1):1-35, August 1977.

[5] R.S. Boyer. Locking: A Restriction of Resolution. PhD thesis, University of Texas at

Austin, August 1971.

[6] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York,

1979.

[71 R.S. Boyer and J S. Moore. Proving theorems about Lisp programs. In Advance

Papers from the Third IJCAI, SRI, Menlo Park, CA, Stanford Univ., Stanford, CA,

August 1973. Revised version appears in JACM, Volume 22, Number 1, pages 129-

144, 1975.

[8] B.G. Buchanan and E. A. Feigenbaum. Dendral and meta-dendral: their applications

dimension. Artificial Intelligence, 11:5-24, August 1978. Special issue on Applications

to the Sciences and Medicine. Edited by N.S. Sridharan.

[9] B.G. Buchanan and E.H. Shortliffe. Rule-Based Expert Systems: The MYCIN Ex-

pr.riment s of the 5tonford ieuristic Programming Project. Addison-Wesley, Reading,

MlA, 1984.

106

BIBLIOGRAPHY 107

[10] Bruce Buchanan, Russ Altman, James Brinkley, Craig Cornelius, Bruce Duncan,
Barbara Hayes Roth, Michael Hewett, Olivier Lichtarge, and Oleg Jardetzky. The
Heuristic Refinement Method for Deriving Solution Structures of Proteins. KSL-85-
41, STAN-CS-86-1115, Knowledge Systems Laboratory, Stanford University, March
1986. Also appears in Proceedings of the National Academy of Science.

[11] R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of AC,1M, 24(1):44-67, 1977.

[12) U. S. Chakravarthy. Semantic Usage and Query Optimization in Deductive Databases.
Technical Report TR-1413, University of Maryland, June 1984.

[13) U. S. Chakravarthy, J. Minker, and J. Grant. Semantic query optimization: addi-
tional constraints and control strategies. In Proceedings of the First International

Conference on Expert Database Systems, pages 259-269, Charleston, South Carolina,
April 1986.

[14) U. S. Chakravarthy. S'mantic Quer.)ptir iza lion in Deductive Databases. PhD

thesis, University of Maryland, July 1985.

[15] C. L. Chang and R. C. T. Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, New York, 1973.

[16] Eugene Charniak and Drew V. McDermott. Introduction to Artificial Intelligence.

Addison-Wesley, Reading, Massachusetts., 1985.

[17] W.J. Clancey. Classification problem solving. Proceedings of the National Conference

on Artificial Inlelligcnce, 49-55, 1984.

[I], W. S. Cooper. Fact retrieval and deductive question answering information retrieval

systems. Journal of ACM, 11:117-137, April 1964.

[19] Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 2S(2):127 162,
1986.

[20] Johan de Nicer. An A.ssunmption-Based TMS. Technica.l Report, XEI1OX Palo Alto]

Research Center, February 1985.

[21] Johan de Meer. Choices witlhout backtracking. In Proceedings of the National Con-

ference on Artificial Intelligencf, AAAI, University of Texas at Austin, TX. August

J984.

108 BIBLIOGRAPHY

[22] John Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272, 1979.

[231 George W. Ernst and Allen Newell. GPS: A Case Study in Generality and Problem

Solving. Academic Press, New York, 1969.

[241 R.E. Fikes. Ref-arf: a system for solving problems stated as procedures. AI, 1(1):27-

120, Spring 1970.

[251 R.E. Fikes and N.J. Nilsson. Strips: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[26] R.E. Filman and R.W. Weyhrauch. An FOL Primer: Al Lab. Memo 288, Stanford

University, 1976.

[27] M. R. Genesereth. An Overview of MRS. fleuristic Programming Project Memo,

Stanford University, June 1983.

[281 Michael R. Genesereth. The use of design descriptions in automated tagnosis. Arti-

ficial Intelligence, 24, 1984.

[291 Randy Goebel, Koichi Furukawa, and David Poole. Using definite clauses and in-

tegrity constraints as the basis for a theory formation approach to diagnostic reasoning.

Research Report CS-85-50, University of Waterloo, December 1985.

[30] Claude Cordell Green. The Application of Th orcm Proving to Question-Answiering

Systems. PhD thesis, Stanford University, June 1969. (also published as Stanford Al

Project Memo AI-96, and by Garland Publishing, New York, 1980).

[31] Cordell C. Green. Application of theorem proving to problem solving. It International

joint Cnnference on Artificial Intelligence, pages 219-239, 1969.

[32] Cordell C. Green. Theorem proving by resolution as a basis for question-answering

systems. In Meltzer and Michie, editors, Machine Intelligence 4, Edinburgh University

Press, Edinburgh, 1969.

[331 Cordell C. Green and S.J. Westfold. Knowledge-based programming and deduction in

algorithm design. In Machine Intelligence J0, pages 339-359, Ellis Ilorwood Limited,

Chichester, England, 1982.

[34] Russell Greiner. Learning by Understanding Analogies. PhD thesis, Stanford Univer-

sity, September 1985. Technical Report STAN-CS-1071.

Va

BIBLIOGRAPHY 109

[35] M. H. Hammer and S. B. Zdonik. Knowledge based query processing. In Proceed-

ings of the Sixth International Conference on Very Large Databases, pages 137-147,

September 1980.

[36] Charles Hartschorne and P'aul Weiss, editors. Collected Papers of Charles Sanders
Peirce. MIT Press, Cambridge, Mass., 1933.

[37] Patrick J. Hayes. In defence of logic. In Proceedings of the Fifth IJCA I, pages 559-565,

Cambridge, MA, August 1977.

[38] P.J. Hayes. A logic of actions. In Machine Intelligence 6, pages 495-520, American

Elsevier, New York, 1971.

[39] P.J. Hayes. Robotologir. In Machine Intelligence 5, pages 533-554. Edinburgh Uni-

versity Press, Edinburgh, Scotland, 1969.

[40] Barbara Hayes-Roth, Bruce Buchanan, Olivier Lichtarge, Michael Hewett, Russ Alt-

man, James Brinkley, Craig Cornelius, Bruce Duncan, and Oleg .Jardetzky. Deriving

protein structure from constraints. In Proceedings of the National Conference on Ar-
tificial Intelligence, pages 904-909, Philadelphia, Pennsylvania, 1986. Also appears

as Stanford Technical Report KSL-86-51.

[41] Barbara Hayes-Roth, Frederick Hayes-Roth, Stanley J. Rosenschein, and Stephanie

Cammarata. Modeling planning as an incremental, opportunistic process. In Pro-
ceedings of the Sixth IJCAI, pages 375-383, 1979.

[42] C. G. Hempel. Aspects of Scientific Explanation. Free Press, New York, 1965.

[431 M. Jarke, J. Clifford, and Y. Vassilion. An optimizing prolog front-end to a relational
query sybLtem. In Proceedings of ACM SIGMOD, pages 295 .;06. .Juine 198,1.

[441 Jonathan J. King. Query Optimization by Semantic Reasoning. PhD thesis. Depart-
ment of Computer Science, Stanford University, May 1981.

[45] Madhur Kohli and .Jack Minker. Intelligent control using integrity constraints. In"

Proc. of the Nat'l Conif. on AI, AAAI, Washington, D.C., \ugist 1983.

[461 K. Konolige. A deduction model of belief and its loyics. PhD thesis, Stanford Untiver-

sity, June 1984. also report no. STAN-CS-84-1022.

[47] It. Kowalski. Algorithm = logic + control. C/A C11, 22(-7):-121 136. 1979.

110 BIBLIOG1RAPHY

[48] R. Kowalski. Predicate logic as a programming language. Information Processing,

74:569-574, 1974.

[49] R. C. T. Lee, C. L. Chang, and R. J. Waldinger. An improved program-synthesizing
algorithm and its correctness. CA CM, 17(4):211-217, April 1975.

[50] Richard C. T. Lee. A Completeness Theorem and a Computer Program for Finding

Theorems Derivable from Given Axioms. PhD thesis, University of California at

Berkeley, 1967.

[51] D. W. Loveland. A linear format for resolution. In Proc. IRIA Symp. Automatic

Demonstration, pages 147-162, Springer-Verlag, Versailles, France, 1968.

[52) Donald W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland

Publishing Co., Amsterdam, 1978.

[53] D. Luckham. Refinements in resolution theory. In Proc. IRIA Symp. Automatic

Demonstration, pages 163-190, Springer-Verlag, Versailles, France, 1968.

[54] David Luckham and Nils J. Nilsson. Extracting information from resolution proof
trees. Artificial Intelligence, 2:27-54, 1971.

[55] Jock Mackinlay and Michael R. Genesereth. Expressiveness of languages. In Pro-
ceedings of the National Conference on Artificial Intelligence, Austin, Texas, August

1984.

[56] Jock D. Mackinlay. Automatic Design of Graphical Presentations. PhD thesis, Stan-

ford University, December 1986.

[57] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill Inc., San Fran-

cisco, 1974.

[58] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.
ACM Transactions on Programming Languages and Systems, 2(1):90-121, 1980.

[59] Zohar Manna and Richard Waldinger. Special relations in automated deduction.
Journal of ACM, 33(1):1-59, 1986.

[60] Zohar Manna and Richard Waldinger. Synithesis: dreams => programs. IEEE Trans-

actions on Sortware Engineering SE-5, 4:294-328, 1979. Also published as Stanford

A.I. Lab Memo 302, 1977.

BIBLIOGRAPHY 111

[61] J. P. Martins. Reasoning in Multiple Belief Spaces. Technical Report Computer 0

Science Department Technical Report 203, MIT, Buffalo, N.Y., 1983.

[62] D. McAllester. An Outlook on Truth Maintenance. Technical Report MIT AIM-551,
MIT, Cambridge, Mass., 1980.

(63] D. McAllester. Reason Utility Package User's Manual. Technical Report MIT AIM-
667, Massachusets Institute of Technology, Cambridge, Mass., 1982.

[641 D. McAllester. A Three-Valued Truth Maintenance System. Technical Report S.B.
Thesis, Department of Electrical Engineering, Massachusets Institute of Technology,

Cambridge, Mass., 1978.

(65] John McCarthy. Epistemological problems of artificial intelligence. In Proceedings of
the Fifth IJCAI, pages 1038-1044, Cambridge, 1977.

[661 John McCarthy. Situations, Actions, and Causal Laws. Stanford Al Lab Memo AIM-
2, Stanford University, 1963. Also published in Semantic Information Processing

(Marvin Minsky, ed.), MIT Press, Cambridge, Mass., 1968, pages 410-417.

[671 Drew McDermott. Contexts and data dependencies: a synthesis. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 5(3), 1983.

(681 Drew McDermott. A critique of pure reason. Yale University, June, 1986, unpub-
lished.

[69] J. R. McSkimin and Jack Minker. The use of a semantic network in a deductive
query answering system. In Proceedings of the Fifth I.CI I, pages 50-58, Cambridge,

Massachusetts, August 1977.

[70 Eliana Minicozzi and Raymond Reiter. A note on linear resolution strategies in con-

se(qaence finding. Artificial Intelligence, 3:175-180, 1972.

[71] Allen Newell, John C. Shaw, and Herbert A. Simon. Preliminmry Description of

General Problem Solving Program-I (GPS-I). Report CIP Working Paper 7, Carnegie

Instit. of Tech., Pittsburgh, PA, 1957.

[72] N. .. Nilsson. Principles of Artificial Intelligence. Tioga. Publishing Co., Palo Alto,

I .%O.0

Ew

FU-

112 BIBLIOGRAPHY

[73] David Poole, Randy Goebel, and Romas Aleliunas. Theorist: a logical reasoning
system for defaults and diagnosis. Research Report CS-86-06, University of Waterloo,
February 1986.

[74] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

[75] Raymond Reiter. On closed world data bases. In H. Gaillaire and Jack Minker,
editors, Logic and Data Bases, Plenum Press, New York, 1978.

[76] J. A. Robinson. Automatic deduction with hyper-resolution. International Journal
of Computer Mathematics, 1:227-234, 1965.

[77] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23-41, 1965.

[78] P. Roussel. Prolog: Manual de reference et d'utilisation. 1975. Groupe d'Intelligence
Artificielle, Marseille-Luminy; September.

[79] Stuart Russell. The Compleat Guide to MRS. KSL-85-12, Stanford University Com-
puter Science Department, June 1985.

[80] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelli-

gence, 5:115-135, 1974.

[81] Earl D. Sacerdoti. A Structure for Plans and Behavior. Technical Report Technical
Note 109, SRI, August 1975.

[82] E.H. Shortliffe. Computer-Based Medical Consultations: MYCIN. Elsevier North
Holland, Inc., New York, 1976. based cn Phd thesis, Stanford University, Stanford,

CA, 1974.

[83] Narinder Singh. Exploiting Design Morphology to Manage Complexity. PhD thesis,
Stanford University, August 1985. Published by Schlumberger Palo Alto Research.

[84] J.R. Slagle. Experiments with a deductive question answering program. CACAI, 8,
December 1965.

[85] D. E. Smith. Controlling Inference. PhD thesis, Stanford University, August 1985.

[861 D. E. Smith and M. R. Genesereth. Ordering conjunctive queries. Artificial Intelli-

gence, 25, 1985.

BIBLIOGRAPHY 113

[87] Douglas R. Smith. Derived preconditions and their use in program synthesis. In 6th

Conference on Automatic Deduction, pages 172-193, New York, 1982.

[88] Douglas R. Smith. A problem reduction approach to program synthesis. In Proceed-
ings of the Eighth IJCAI, pages 32-36, IJCAI, Karlsruhe, West Germany, August

1983. Vol. 1.

[89] Douglas R. Smith. Top-down synthesis of divide-and-conquer algorithms. Artificial
Intelligence, 27(1), 1985.

[90] Richard M. Stallman and Gerald J. Sussman. Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Artificial In-
telligence, 9(2):135-196, October 1977. Reprint in "Al-MIT", vol. 1, pp. 3 1-9 1. Also
MIT Al Memo 380,'76.

[911 Guy L. Steele. The Definition and Implementation of a Computer Programming Lan-
guage based on Constraints. Technical Report Artificial Intelligence Laboratory, TR-

595, MIT, Cambridge, Mass., 1979.

[92] Mark J. Stefik. Planning with constraints. Artificial Intelligence, 16(2):111-140, 1981.

[93] Mark Jeffrey Stefik. Planning with Constraints. PhD thesis, Computer Science De-
partment, Stanford University, January 1980. Stanford Rep. Nos. HPP-80-2, STAN-

CS-80-784.

(94] G. J. Sussman. A Computational Model of Skill Acquisition. Technical Report MIT
AI-TR-297, NIL, Cambridge, Mass., August 1973.

[95] Richard Treitel and Michael R. Genesereth. Ordered resolution with negative replace-
ment. .lune 1986. Personal Communication.

[96] W. van Melle. A domain-independent .system that aids in constructing kotwle~dgc-
based consultation programs. PhD thesis, Computer Science Department, Stanford

University, June 1980.

[971 Richard Waldinger. Achieving several goals simultaneously. In Eldward W. Elcock and
Donald Michie, editors, Ma(chine [nteilliene, ,: Machine 1?eprqsentt, ioni of Knowl-

edge, pages 94-136, Ellis Horwood Ltd., Chichester, England, 1977. Also Si. Tech-
nical Note 107, July, 1975.

114 BIBLIOGRAPHY

[98] R.J. Waldinger. Constructing Programs Automaically Using Theorem Proving. Ph

D. Dissertation, Computer Science Dept., Carnegie-Mellon University, Pittsburg, PA,

1969. AD 697 041.

[99] R.J. Waldinger and R.C.T. Lee. Prow: a step toward automatic program writing. In

Walker, editor, International Joint Conference on Artificial Intelligence, pages 241-

252, Mitre Co., 1969.

[100] Adrian Walker. Prolog/exl, an inference engine which explains both yes and no

answers. In Proceedings of the Eighth IJCAI, pages 526-528, IJCAI, Karlsruhe, West

Germany, August 1983. Vol. 1.

[101] Adrian Walker. Prolog/Ezi, An Inference Engine Which Explains Both Yes and No

Answers. Technical Report RJ3771, IBM Research Laboratory, San Jose, California,

January 1983.

[102] D. Waltz. Understanding line drawings of scenes with shadows. In P.H. Winston,

editor, The Psychology of Computer Vision, pages 19-91, McGraw-Hill, New York,

1975. based on Phd thesis, MIT, Cambridge, MA, 1972.

[103] David L. Waltz. Generating Semantic Descriptions from Drawings of Scenes with

Shadows. Technical Report MIT AI-TR-271, MIT, Cambridge, Mass., November

1972.

[104] T. Winograd. Frame representations and the procedural/declarative controversy. In

Representation and Understanding: Studies in Cognitive Science, pages 185-210, Aca-
demic Press, New York, 1975.

[1051 L. Wos, G. Robinson, and D. Carson. Efficiency and completeness of the set of support

strategy in theorem proving. Journal of the ACM, 12:536-541, 1965.

[106] Larry Wos, Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated Reasoning: In-

troduction and Applications. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1984.

[107] G. D. Xu. Search Control in Semantic Query Optimization. Technical Report 83-9,

University of Massachusetts, Department of Computer Science, Amherst, 1983.

Li

